A Theoretical Investigation of the Copper-Superoxide System. A Model for the Mechanism of Copper-Zinc Superoxide Dismutase

M. ROSI, A. SGAMELLOTTI, F. TARANTELLI

Department of Chemistry, University of Perugia, Italy

I. BERTINI and C. LUCHINAT

Department of Chemistry, University of Florence, Italy

Received February 8, 1985

The superoxide ion in water is unstable with resper superbande for the water is unstable with respect to dioxygen and hydrogen peroxide $[1]$. Copper-zinc superoxide dismutase (SOD) is a highly efficient catalyst of the dismutation $[2]$. Although it has not been definitely proved, it is often assumed that electron transfer between copper and super- $\frac{1}{3}$. In particular through direct binding $\frac{1}{3}$. In particular through direct binding $\frac{1}{3}$. In particular through direct binding $\frac{1}{3}$. In particular through direct binding $\frac{1}{3}$. In particular, where occurs infought uncertaining $[3-3]$, in partieular, it is believed that the reaction occurs in the following two steps:

$$
Cu^{2+} + O_2^- \xrightarrow{--} Cu^+ + O_2 \tag{1}
$$

$$
Cu^{+} + O_{2}^{-} + 2H^{+} \Longrightarrow Cu^{2+} + H_{2}O_{2}
$$
 (2)

 \mathcal{U} have been trying to understand such electronic to understand such electronic to understand such electronic to understand such a such as \mathcal{U} transfer through about the *initial security of models* and the contract such a security of the system of the transfer through *ab initio* treatments of model systems. In the meantime a paper has appeared in which t_{max} in the intermediative a paper has appeared in which $\frac{1}{2}$ is the state of SOD interaction of $\frac{1}{2}$ are calculated with $\frac{1}{2}$ are calculated with $\frac{1}{2}$ and $\frac{1}{2}$ are calculated with $\frac{1}{2}$ and $\frac{1}{2}$ are calculated with $\frac{1}{2}$ and $\frac{1}{2}$ are system of SOD interacting with O_2 ⁻ are calculated through a Hartree-Fock pseudopotential approach $[6]$. The SOD model consists of three ammonia nitrogens plus an imidazolate ion bridging the copper
ion with a proton. Under these circumstances the $\frac{24}{100}$ superiority is stabilized by hydrogen in the stabilized by hydrogen is stabilized by hydrogen in the stabilized by hyd $\frac{d}{dx}$ -superbande system is stabilized by hydrogen onding with an iving non winch summates argume describe the system as Cu'-triplet dioxygen and then $\frac{1}{2}$ the electron from superconduction superior superior super $\frac{d}{dx}$ ansiet the electron from superoxide to copper.

Our calculations have shown that when only copper(II) and superoxide are considered (with a $Cu-O$ distance of 1.9 Å, an $O-O$ distance of 1.3 Å, and a Cu-O-O angle of 136 $^{\circ}$), the only stable species is $Cu⁺-O₂$, which is also stable with respect to disso-
ciation (Fig. 1). m_{1} is m_{2} , m_{3} interaction in m_{1} (II) (for m_{1})

when an annivona meraces with copper (1) (for Example when a Cu⁻¹ distance of 2.07 A and an N^{-} α α angle of α , the stable species is simply α $O₂$, which is however unstable with respect to dissociation. It is interesting to note that the major effect of $NH₃$ is that of increasing the electronic charge

density on copper and thus to destabilize the Cu'- $\sum_{n=1}^{\infty}$ $\sum_{i=1}^{n}$ a proton of $\sum_{i=1}^{n}$ is allowed to interact with $\sum_{i=1}^{n}$ interact with $\sum_{i=1}^{n}$ interact with $\sum_{i=1}^{n}$

 $\frac{11}{2}$ and $\frac{1}{2}$ Cu^{2+} and O_2^- , the only stable species is described as $Cu²⁺$ and superoxide. It is a sufficiently weak H ---O interaction, as weak as the interaction due to a very large hydrogen bond distance such as 2.5 Å, to stabilize the above species with respect to copper(I)-dioxygen. The effect of an ammonium. σ copper(I)- aloxygen. The effect of all annifolding proton at the same distance on the bare copper(II)--
superoxide system still gives a stable $Cu⁺-O₂$ species, which is unstable with respect to dissociation.

ig. 1. Energies of

 T simultaneous effects of a single nitrogen of a single nitrogen α The summaneous effects of a sugge incrogen donor to copper(II) and of a hydrogen bond between the distal oxygen and ammonium definitely stabilize the $Cu^{2+}-O_2$ species (Fig. 1). These results are in agreement with the previous publication in which four nitrogens were considered to interact with the copper ion $[6]$. \mathcal{L} for a string of action of \mathcal{L} and \mathcal{L} and \mathcal{L} action of \mathcal{L}

As far as the mechanism of action of SOD is concerned, these calculations show that the mechanism which requires interaction of superoxide with both $copper(II)$ and arginine 141 [7] cannot associate $copper(I)$ and dioxygen with a single superoxide ion involved in the process. As previously suggested [6], a second superoxide is required to reduce the $Cu^{2+} \frac{1}{2}$ -second superoxide is required to reduce the cu⁻⁻ p_2 species to $cu -v_2$. Whereas the results of the previous theoretical calculations were bound to a particular CuN₄ (H^+) model, we have shown that every $copper(II)$ complex (with more than one electron donor ligand) will give a $Cu^{2+}-O_2^-$ adduct without copper reduction, provided that the distal superoxide oxygen is allowed to form even a weak hydrogen bond. The calculations were performed within the

The calculations were performed within the α and α and α for the formulation, α and α β valuelle valussian vasis sets or double zeta for the core of the c

- 1.5 Fridovich, Adv. Engymnet 41, 35 (1974). $2 \sum_{i=1}^n \prod_{i=1}^n \text{Cov}_i \text{Cov}_i$, $\text{Cov}_i \text{Cov}_i$, $\text{Cov}_i \text{Cov}_i$, in T. G. Spiro (ed.), in T. G. Spiro (
- 'Metal Ions in Biology, Vol. 3', Wiley, New York, 1981, p. 291.
- *3* J. A. Fee, in H. Sigel (ed.), 'Metal Ions in Biological Systerns, Vol. 13', Marcel Dekker, New York, 1981, p. 259.
- **References** *4* A. Rigo, P. Viglino and G. Rotilio, *Biochem.* Biophys. *Rex Commun.,* 63, 1013 (1975).
	- 5 I. Bertini and C. Luchinat, in E. Clementi (ed.), 'Structure and Dynamics of Nucleic Acids, Proteins and Membranes', Adenine, in press.
	- 6 R. Osman and H. Basch, J. *Am. Chem. Sot., 106, 5710* (1984).
	- 7 J. A. Tainer E. D. Getzoff, J. S. Richardson and D. C. Richardson, *Nature (London), 306. 284* (1983).