Structure of $[Co(meen)_2(en)]Br_3 \cdot H_2O^*$

RICHARD E. MARSH

Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, CA 91125 (U.S.A.)

(Received April 4, 1989)

The crystal structure of this compound (meen = N-methylethane-1,2-diamine) has recently been described as monoclinic, space group I2/a, with a = 12.626(5), b = 22.977(5), c = 12.619(6) Å, $\beta = 97.84(4)^\circ$, Z = 8 [1]. It is properly described as orthorhombic, space group Fddd, with a = 19.030, b = 22.977, c = 16.589 Å, Z = 16. The orthorhombic cell can be derived from the vectors $[10\bar{1}]$, [010] and [101]; the corresponding coordinate transformations are: $x' = \frac{1}{2}(x - z)$, y' = y, $z' = \frac{1}{2}(x + z)$. After averaging over appropriate pairs of atoms and shifting the origin by $\Delta x' = 0.25$, $\Delta z' = 0.25$ (in order to place the origin at the conventional center in Fddd), the coordinates in Table 1 result. No atom needed to be shifted by more than its e.s.d. in order to comply with the symmetry of Fddd.

*Contribution No. 7926 from the Arthur Amos Noyes Laboratory.

 TABLE 1. Coordinates for the space group Fddd

Atom	Site	x	у	Z
Br(1)	16(e)	0.47214	0.12500	0.12500
Br(2)	32(h)	0.57255	0.02094	0.36028
Со	16(f)	0.37500	0.12282	0.37500
N(1)	32(h)	0.3328	0.1826	0.4452
N(2)	32(h)	0.2840	0.1258	0.3152
N(3)	32(h)	0.4107	0.0598	0.3051
C(1)	32(h)	0.2577	0.1899	0.4248
C(2)	32(h)	0.2485	0.1814	0.3359
C(3)	32(h)	0.2814	0.1170	0.2268
C(4)	32(h)	0.3762	0.0039	0.3297
0	16 (f)	0.3750	0.2958	0.3750

Since the required shifts are so small, there are no significant changes in the bond lengths and angles reported earlier [1]. The two molecules a and \mathbf{b} , which were independent in the earlier description, now become equivalent by symmetry.

Reference

1 G. H. Seatle and E. R. T. Tiekink, Inorg. Chim. Acta, 156 (1989) 57.