Assignment of a Space Group for $[Co(meen)_2(en)]Br_3 \cdot H_2O$

EDWARD R. T. TIEKINK

Jordan Laboratories, Department of Physical and Inorganic Chemistry, University of Adelaide, SA 5001 (Australia) (Received September 8, 1989)

In the preceding article [1] Marsh has suggested an alternative space group for the crystal structure of $[Co(meen)_2(en)]Br_3 \cdot H_2O$ (meen = N-methylethane-1,2-diamine), determined in these laboratories [2]. The compound was reported to crystallize in the centrosymmetric space group I2/a with eight formula units in the unit cell. The asymmetric unit in this setting is comprised of two unique halves of complex cations (each situated about a crystallographic twofold axis), three bromide atoms in general positions, and two solvent water molecules of crystallization (each situated about a crystallographic two-fold axis). The two unique complex cations comprising the asymmetric unit are enantiomorphic, being related to each other by a pseudo-mirror plane. The presence of two closely related entities in the asymmetric unit poses the question as to whether a higher symmetry space group would be more appropriate [3]. However, an examination of interionic contacts in the lattice involving the bromide anions was thought to be consistent with the presence of three crystallographically unique bromide anions, i.e. 12/a. A satisfactory refinement in that space group, without problems with correlation effects, yielded final refinement details as listed in the original article [1] and in Table 1.

The application of a transformation matrix $[10\overline{1}, 010, 101]$ to the I2/a cell yields a metric cell and systematic absences consistent with the orthorhombic space group *Fddd*; this is the space group recommended by Marsh [1]. In this setting the asymmetric

TABLE 1. Refinement details for [Co(meen)₂(en)]Br₃·H₂O

Space group	I2/a ^a	Fddd
R	0.038	0.039
g	0.0033	0.0075
-	0.041	0.044
R _w R _g	0.053	0.060
No. of reflections	1693	1025
No. of refined parameters	186	94

^aFrom ref. 2.

unit, by virtue of the higher crystallographic symmetry, is comprised of half a complex cation, a bromide anion and a water molecule, each situated on a crystallographic two-fold axis, and a bromide anion in a general position. The Fddd model was refined using the published coordinates [1] as a starting set. A full-matrix least-squares refinement based on F was performed with anisotropic thermal parameters for non-hydrogen atoms and hydrogen atoms included in the model at their calculated positions [4]. A weighting scheme of the form $w = [\sigma^2(F) + |g|F^2]^{-1}$ was introduced and the refinement continued until convergence. In all respects the refinement proceeded as for the original analysis [2]. Final refinement details for the Fddd setting are listed in Table 1.

On the basis of standard significance tests [5], it is evident that the refinement in the I2/a model results in a lower residual (Table 1), in particular for the R_g values (those recommended by Sheldrick [4]). However, it is noted that any differences in the residuals are not great and that both refinements yield chemically reasonable models for the structure of [Co(meen)₂(en)]Br₃·H₂O. The derived parameters for the Fddd model are available as Supplementary Material. It is worth emphasising that in both space groups the crystallographic results lead to the same chemical conclusions.

Supplementary Material

Tables of fractional atomic coordinates, thermal parameters, interatomic parameters and structure factor amplitudes are available from the author on request.

Acknowledgements

It is a pleasure to acknowledge valuable discussions held with Dr B. F. Hoskins. The Australian Research Grants Scheme is thanked for support.

References

- 1 R. E. Marsh, Inorg. Chim. Acta, 166 (1989) 1.
- 2 G. H. Searle and E. R. T. Tiekink, Inorg. Chim. Acta, 156 (1989) 57.
- 3 W. H. Baur and E. Tillmanns, Acta Crystallogr., Sect. B, 42 (1986) 95.
- 4 G. M. Sheldrick, SHELX-76, program for crystal structure determination, University of Cambridge, U.K., 1976.
- 5 W. C. Hamilton, Acta Crystallogr., 18 (1965) 502.

0020-1693/89/\$3.50