

Photochemistry of the $[M(CN)_8]^{4-}-2,2$ 'Bipyridyl System: a New Complex Ion $[MO(bpy)(CN)_3]^{-}$ (M = Mo, W)

ALINA SAMOTUS, JANUSZ SZKLARZEWICZ

Faculty of Chemistry, Jagiellonian University, Karasia 3, 30-060 Kraków (Poland)

and NATHANIEL W. ALCOCK

Department of Chemistry, University of Warwick, Coventry CV4 7AL (U.K.)

(Received November 28, 1989)

Photolysis of $[M(CN)_8]^{4-}$ (M = Mo, W) in neutral and alkaline solutions normally produces $[MO(OH_2)-(CN)_4]^{2-}$ or $[MO(OH)(CN)_4]^{3-}$ (depending on the pH) [1]. Only under excess of cyanide, is the final photoproduct $[MO(CN)_5]^{3-}$ [2]. More recently, Ali and Murtaza [3, 4] reported that in the presence of 2,2'-bipyridyl (bpy) the $[M(OH)_3-$ (bpy)₂(CN)] is formed via the photo-substitution process

$$[M(CN)_8]^{4-} + bpy \xrightarrow{h\nu}$$
$$[M(OH)_2(bpy)(CN)_4]^{2-} + 2OH^- + 4HCN \qquad (1)$$

14 KK 24

22

20 18

$$[M(OH)_{2}(bpy)(CN)_{4}]^{2-} + bpy \xrightarrow{h\nu} \longrightarrow$$
$$[M(OH)_{3}(bpy)_{2}(CN)] + 2OH^{-} + 3HCN \qquad (2)$$

We now report that the photolysis of octacyanometalates(IV) in the presence of bpy is, in fact, photo-aquation of cyanide ligands but not photosubstitution by bpy.

Figure 1 shows absorption spectra of the $[M(CN)_8]^{4-}$ -bpy system upon irradiation. Although the experimental results are similar to those reported by Ali and Murtaza [3], none of the bands in Fig. 1 is attributable to the complexes proposed by the authors. Following precipitation procedure with CsCl [5], we have isolated Cs₂Na[MO(CN)₅] having $\lambda_{max} = 645$ nm (Mo) and $\lambda_{max} = 615$ nm (W), thus proving that the main product of photolysis is the [MO(CN)₅]³⁻ ion (as in the presence of cyanide [2]). In the dark this product decreases and another one, with a well-resolved maximum at $\lambda = 455$ nm (Mo) and $\lambda = 495$ nm (W) is formed (Fig. 2).

Thermal reaction of $[MO(CN)_5]^{3-}$ with bpy followed by precipitation with $AsPh_4^+Cl^-$ affords the black solid, $(AsPh_4)[MO(bpy)(CN)_3] \cdot \frac{1}{2}bpy \cdot$ $2H_2O$. The structure of the tungsten complex (after recrystallization from methanol) has been obtained by X-ray diffraction. Crystal data for $(AsPh_4)$ - $[WO(bpy)(CN)_3] \cdot \frac{1}{2}bpy \cdot 2H_2O$: triclinic PI with a = 10.035(3), b = 12.829(5), c = 15.732(5) Å; $\alpha =$ 76.00(3), $\beta = 84.00(3)$, $\gamma = 88.30(3)^\circ$; U = 1954(3)Å³, Z = 2 for 6104 unique observed $(I/o(I) \ge 2.0)$ reflections. A perspective drawing together with selected bond lengths and angles is given in Fig. 3.

The same product can be obtained from the reaction of $[MO(OH_2)(CN)_4]^{2-}$ with bpy [6]. Its

16

14 kK

0020-1693/90/\$3.50

22

20

18 16

24

© Elsevier Sequoia/Printed in Switzerland

Fig. 2. Changes in the electronic spectra of irradiated $(t_{ir} = 8 \text{ min}) 0.01 \text{ M } [W(CN)_8]^{4-}$ in 0.01 M bpy in the dark. Curves 1-5 correspond to t = 0, 4, 9, 16 and 22 min respectively.

geometry conforms to that of an anion such as $[MO(phen)(CN)_3]^-$ [7] and $[WO(Pic)(CN)_3]^{2-}$ (Pic = 2-picolinate) [8]. The characteristic features of the $[MO(bpy)(CN)_3]^-$ anion are the intense metal-to-ligand charge-transfer bands at 455 and 645 nm (Mo) and at 495 and 633 nm (W) [6].

Finally, the results of this investigation clearly demonstrate that the photolysis of the $[M(CN)_8]^{4-}$ — bpy system is a photo-aquation leading to $[MO(CN)_5]^{3-}$ followed by a relatively slower thermal substitution of two cyano groups by bpy.

Acknowledgements

This work was supported by the PAN (CPBP 01.12.9.5), by the British Council and by the S.E.R.C.

Fig. 3. View of the anion $[WO(bpy)(CN)_3]^-$ in crystalline $(AsPh_4)[WO(bpy)(CN)_3] \cdot \frac{1}{2}bpy \cdot 2H_2O$. Selected distances are: W-O, 1.735(7); W-C(1), 2.137(10); W-C(2), 2.129(10); W-C(3), 2.149(13); W-N(4), 2.149(9); W-N(5), 2.307(8) Å. Selected angles are: O-W-C(1), 101.3(4); O-W-C(2), 99.7(4); O-W(C(3), 103.7(4); O-W-N(4), 93.5(4); O-W-N(5), 164.1(4)^{\circ}.

References

- V. Carassiti, A. M. Marinangeli and V. Balzani, Ann. Chim. (Rome), 50 (1960) 790; S. J. Lippard and B. J. Russ, Inorg. Chem., 6 (1967) 1943; A. Samotus, Z. Stasicka, A. Dudek and L. Nadzieja, Rocz. Chem., 45 (1971) 299; B. Sieklucka and A. Samotus, J. Inorg. Nucl. Chem., 42 (1980) 1003, and refs. therein.
- 2 M. Dudek and A. Samotus, Transition Met. Chem., 10 (1985) 271.
- 3 S. I. Ali and Z. Murtaza, Polyhedron, 4 (1985) 821.
- 4 S. I. Ali and Z. Murtaza, Polyhedron, 5 (1986) 1273.
- 5 K. Wieghardt, G. Backes-Dahmann and W. Holtzbach, Z. Anorg. Allg. Chem., 499 (1983) 44.
- 6 A. Samotus, W. Gług, A. Kanas and J. Szklarzewicz, to be published.
- 7 S. S. Basson, J. G. Leipoldt and I. M. Potgieter, *Inorg. Chim. Acta*, 90 (1984) 57; 87 (1984) 71.
- 8 J. G. Leipoldt, S. S. Basson, A. Roodt and I. M. Potgieter, *Transition Met. Chem.*, 11 (1986) 323.