The Preparation and X-ray Characterisation of $[(PPh₂Me)₂Pt(\mu-PPhH)₂Pt(PPh₂Me)₂][Cl]₄· $\frac{3}{2}$ CH₂Cl₂$ and $[(PPh,Me),Pt(\mu-PPhH)Pt(PPh,Me),][Cl]$, $[PhPO,OH]$ ₂ $[PhPO(OH)_2]$ ₂

IVAN P. PARKIN, ALEXANDRA M. Z. SLAWIN, DAVID J. WILLIAMS and J. DEREK WOOLLINS* *Department of Chemistry, Imperial College, South Kensington, London SW7 2A Y (U.K.)* (Received October 2, 1989)

Abstract

Reaction of (PPh) ₅ with PtCl₂ (PR_3) ₂ in CH₂Cl₂ gives $[({\rm PPh}_2{\rm Me})_2{\rm Pt}(\mu{\rm -PPhH})_2{\rm Pt}({\rm PPh}_2{\rm Me})_2{\rm |[C]|}_4$ $^{2}_{2}CH_{2}Cl_{2}$ (1) or [(PPh₂Me)₂Pt($\text{[Cl]}_2\text{[PhPO}_2\text{OH]}_2\text{[PhPO}(\text{OH})_2\text{]}_2$ (2) as shown by microanalyses and X-ray crystallography. The reaction appears (on the basis of $31P NMR$) to proceed via $trans-Pt(PR₃)₂(PPhH)Cl.$ The X-ray structures of 1 and 2 reveal, in both cases, planar coordination of the platinum atoms with a planar Pt_2P_2 central ring. The P-Pt-P and Pt-P-Pt angles are 105 and 75° , respectively. All Pt-P bond lengths are equivalent.

Introduction

Although bimetallic platinum compounds are quite common when bridged by halides, chelating phosphorus-oxygen and phosphite ligands [11, binuclear platinum compounds with pnictide group bridging atoms are rare. Examples are $\lceil Rh(\mu-t) \rceil$ $Bu(H)P)(PMe₃)₂$ and $[Ni(\mu-t-Bu(H)P)(PMe₃)₂]$ ₂ [2] formed from the reaction of the appropriate dichlorobis(trimethylphosphine)metal complex and (H)(t-Bu)PLi. We have synthesised $[(R_3P)_2Pt(\mu NH₂)₂Pt(PR₃)₂$ [BF₄]₂ from the reaction of PtCl₂- $(PR₃)₂$ with sodium metal and HBF₄ in liquid ammonia [3]. We are involved in the study of $(PPh)_5$ with a variety of reagents $[4, 5]$. Here we report the reaction of $PtCl₂(PR₃)₂$ with $(PPh)₅$ which yields compounds with the central $Pt(\mu-PPhH)_2Pt$ dimer core. The compounds have been characterised by microanalyses, X-ray crystallography and infrared spectroscopy.

Experimental

General

All reactions were carried out under an inert atmosphere using standard Schlenk line techniques

unless stated otherwise. Solvents were distilled prior to use; CH_2Cl_2 from CaH_2 and n-hexane from Na/ benzophenone. C_6D_6 was dried over 3A molecular sieves. ${}^{31}P\,{}^{1}H\}$ NMR spectra were obtained on a Jeol FX90Q spectrometer operating at 36.21 MHz and referenced to external H_3PO_4 . Infrared spectra were obtained on a Perkin-Elmer 1720X instrument using KBr discs. Microanalyses was provided by the Imperial College Microanalytical Service and Pascher Microanalytical laboratory, F.R.G., PtCl₂(PR₃)₂ were prepared from $Pt(COD)Cl₂$ and the stoichiometric quantity of free phosphine $[6]$. (PPh)_s was made by reaction of $PPhCl₂$ and magnesium in toluene by the standard procedure [7].

Preparation of the Complexes

Cyclopentaphosphine $(PPh)_5$ $(0.0243 \text{ g}, 0.045)$ mmol) was dissolved in degassed $CH₂Cl₂$ (20 ml) at room temperature. Pt $Cl_2(PMePh_2)_2$ (0.060 g, 0.090 mmol) was added and the mixture stirred at room temperature for five days. The solvent was reduced to c. 2 ml *in vacuo*. Degassed C_6D_6 (0.5 ml) was added and the ${}^{31}P\{^1H\}$ spectra recorded. Addition of n-hexane (15 ml) gave colourless crystals of $(Pt(\mu-PPhH)(PMePh_2)_2Cl_2)_2$ (1) (0.038 g, 0.0245 mmol, 54%). *Anal*. Calc. for [Pt(μ -PPhH)(PMe- $Ph_2)_2$]₂Cl₄·1.5CH₂Cl₂: C, 48.6; H, 4.1; Cl, 9.5. Found: C, 48.7; H, 4.1; Cl, 7.9.

When the reaction was carried out in non-degassed solvents in air, the product was (in the case of $PtCl₂$ - $(PMePh₂)$) $[(PPh₂Me)₂Pt(\mu-PPhH)₂Pt(PPh₂Me)₂]Cl₂$ $[PhPO₂OH]₂[PhPO(OH)₂]₂$ (2) in 42% yield. *Anal.* Calc. for CH₂Cl₂ solvate: C, 48.2; H, 4.2; Cl, 6.4; P, 14.1; 0, 8.7. Found: C, 48.5; H, 4.3; Cl, 5.8; P, 13.1; O, 8.5.

X-ray Studies

Crystal data: $C_{64}H_{64}P_6Pt_2 \cdot 4Cl \cdot 1.5(CH_2Cl_2)$ (1), $M = 1674.0$, monoclinic, $a = 13.812(8)$, $b = 12.481$ -(6), $c = 20.339(10)$ Å, $\beta = 91.90(5)$, $V = 3504$ Å³, space group P_1/n , $Z = 2$ (the molecule is disposed about a centre of symmetry), $D_c = 1.59$ g cm⁻³ Cu radiation, $\lambda = 1.54178$ Å, μ (Cu K α) = 116 cm⁻¹, $F(000) = 1642.$

0 Elsevier Sequoia/Printed in Swizterland

^{*}Author to whom correspondence should be addressed.

Data were measured on a Nicolet R3m diffractometer with Cu K α radiation (graphite monochromator) using ω -scans. A crystal of dimensions 0.17 X 0.17×0.23 mm was used. A total of 3840 independent reflections (2θ < 116°) were measured, of which 3458 had $|F_{\text{o}}| > 3\sigma(|F_{\text{o}}|)$ and were considered to be observed. The data were corrected for Lorentz and polarisation factors. Due to a c . 50% decomposition of the sample during the data collection and also its encapsulation in epoxy resin no absorption correction was applied. The structure was solved by direct methods. The non-hydrogen atoms were refined anisotropically. A ΔF map revealed the presence of a 75% dichloromethane molecule. The positions of the hydrogen atoms were idealised, $C-H = 0.96$ Å, $P-H = 1.33$ Å, assigned isotropic thermal parameters, $U(H) = 1.2 U_{eq}(C)$ and allowed to ride on their parent carbon atoms. The methyl groups were refined as idealised rigid bodies. Refinement was by block-cascade full-matrix leastsquares to $R = 0.063$, $R_w = 0.060$ [$w^{-1} = \sigma^2(F)$] $+ 0.00050F²$. The maximum and minimum residual electron densities in the final ΔF map were 4.18 and -1.59 e A^{-3} , respectively. The mean and maximum shift/error in the final refinement were 0.015 and 0.094, respectively.

Crystal data: $[C_{64}H_{64}P_6Pt_2] \cdot 2[Cl] \cdot 2[C_6H_6O_3P] \cdot$ $2[C_6H_7O_3P]$ (2), $M = 2111$, triclinic, $a = 13.375(2)$, $b = 13.520(2), c = 15.052(2)$ Å, $\alpha = 92.55(1), \beta =$ 107.02(1), $\gamma = 118.86(1)^\circ$, $V = 2223 \text{ Å}^3$, space group $P\overline{1}$, $Z = 1$ (the molecule is disposed about a centre of symmetry), $D_c = 1.58$ g cm⁻³, Cu radiation, $\lambda =$ 1.54178 A, μ (Cu K α) = 86 cm⁻¹, $F(000)$ = 1050.

Data were measured on a Nicolet R3m diffractometer with $Cu K_{\alpha}$ radiation (graphite monochromator) using ω scans. A crystal of dimensions 0.07 X 0.07 X 0.33 mm was used. A total of 6001 independent reflections (2 $\theta \leq 116^{\circ}$) were measured, of which 5456 had $|F_0| > 3\sigma(|F_0|)$ and were considered to be observed. The data were corrected for Lorentz and polarisation factors; a numerical absorption correction (face-indexed crystal) was applied; maximum and minimum transmission factors 0.638 and 0.311. The structure was solved by direct methods. The non-hydrogen atoms were refined anisotropically. The hydroxy protons on the alkylphosphates were located from a ΔF map and refined isotropically. The positions of the remaining hydrogen atoms were idealised, C-H = 0.96 A, $P-H = 1.33$ Å, assigned isotropic thermal parameters, $U(H) = 1.2$ $U_{eq}(C)$ and allowed to ride on their parent carbon atoms. The methyl groups were refined as rigid bodies, Refinement was by blockcascade full-matrix least-squares to $R = 0.042$, $R_w =$ 0.043 $[w^{-1} = \sigma^2(F) + 0.00094F^2]$. The maximum and minimum residual electron densities in the final ΔF map were 1.37 and -1.79 e \AA^{-3} , respectively. The mean and maximum shift/error in the

final refinement were 0.010 and 0.147, respectively. Computations were carried out on an Eclipse S140 computer using the SHELXTL program system $[8]$.

Results and Discussion

Treatment of $PtCl_2(PR_3)_2$ with $(PPh)_5$ in CH_2Cl_2 produces $Pt(\mu-PPhH)_2Pt$ dimers 1 and 2 in reasonable yield. We have performed the reaction under an inert atmosphere and in air. Monitoring of the anaerobic reaction by ${}^{31}P\{^1H\}$ NMR (Fig. 1) reveals an intermediate whose spectrum consists of a triplet and a doublet $({}^2J({}^{31}P-{}^{31}P)$ 20 Hz) with platinum satellites as well as minor impurities. The intermediate is postulated as *trans*-PtCl(PPhH)(PR₃)₂. It is observed in solution after c . 1 day and is the main species in the solution after five days. The intermediate has $^{1}J\{^{195}Pt-^{31}P\}$ couplings of c. 2400 Hz (2P, doublet) and $c. 3500$ Hz (1P, triplet) (Table 1). This is consistent with the structure proposed in Fig. 1. The *trans* PR₃ groups would account for the low value of ¹J coupling (trans-PtCl₂(PR₃)₂ has a

Fig. 1. ${}^{31}P$ {¹H} NMR (CDCl₃ solution) of the crude reaction between $PtCl₂(PEt₃)₂$ and (PPh)₅.

TABLE 1. 31P NMR data for the intermediates observed during the formation of 1 and 2a

Compound		δ A	δγ	$^{1}J_{\rm A}$	$^{1}J_{\mathbf{Y}}$	$^{2}J_{AX}$
1a		17.9	10.0	2270	3460 21	
1c		10.4	-4.3	2428	3620 20	
	δ A	δγ	δ M	$^{1}J_{\rm A}$	$^{1}J_{\rm X}$	$^{2}J_{\rm AX}$
2a	16.5	49.6	21.4	2240	3883 22	
2 _b	-4.8	47.9	22.3	2250	3882 22	

 a_a = PEt₃, b = PMe₂Ph, c = PMePh₂; $V = 31P-195Pt$; $2J =$ $31p-31p$; resonance A is a doublet of intensity 2, resonance X is a triplet intensity 1, resonance M is a singlet.

¹J coupling of c. 2400 Hz [9]. The PPhH⁻ anion trans to chloride would be expected to have a large value of 'J $(^{1}J(^{195}Pt-^{31}P)$ in cis-PtCl₂(PR₃)₂ is c. 3500 Hz). The two equivalent $PR₃$ groups are split by the *cis* PPhH phosphorus into a doublet $(cis²J)$ $\{^{31}P-^{31}P\}$ = 19 Hz) and the PPhH phosphorus consequently appears as a triplet. Without proton decoupling the triplet is split into two sets of multiplets with ^{1}J { $^{1}H-^{31}P$ } of 460 Hz, confirming the presence of a P-H bond.

In the case of the reaction carried out in air the ³¹P NMR of the intermediate has a similar pattern although the triplet is shifted to higher field by c. 50 ppm adn the magnitude of the $1J$ $\{195\text{ Pt} - 31\text{P}\}\$ coupling constant has increased by c . 200 Hz. The resonance due to the trans- $PR₃$ ligands is unaltered from the anaerobic case. The large change in δ ³¹P for the triplet implies that the group *trans* to PPhK is different, possibly of the type OPO since we observe additional ${}^{31}P$ resonances around c. 25 ppm in this case; we propose that the intermediate includes coordinated $PhPO₃²$.

The study of the reactivity of (PPh) , with PtCl₂- $(PR₃)₂$ where PR₃ is PEt₃ or PMe₂Ph, failed to produce crystals of the expected dimeric compound yielding instead yellow oils. No reaction occurred in the case of PR_3 = dppe, probably as the required *trans* geometry of the intermediate could not be obtained for this chelating ligand.

The product in both the aerobic and anaerobic reactions where PR_3 = PMePh₂ crystallised out of the reaction mixture on the addition of n-hexane. Once formed both $[(PPh₂Me)₂Pt(μ -PPhH)₂Pt(PPh₂ Me$ ₂ $[C1]_4$ · 3/2CH₂Cl₂ (1) and $[(PPh_2Me)_2Pt(\mu PPhH)Pt(PPh₂Me)₂$] $[Cl]₂$ $[PhPO₂OH]₂$ $[PhPO₋$

 $(OH)₂$]₂ (2) are insoluble in all common organic solvents, thus no $31P$ NMR studies on these species were possible. Furthermore the mass spectra of these species (in the FAB mode) were unsatisfactory due to the solubility problems. In the EI mode no M+ was observable although fragmentation ions due to $[PtCl₂(PR₃)₂]$ ⁺ and PPhH⁺ were seen.

The infrared spectrum of **1** shows the expected vibrations due to the $PPh₂Me$ ligand in addition to a ν (P-H) vibration at 2580 cm⁻¹. 2 has the ν (O-H) vibration at 3440 cm⁻¹ and δ (O-H) at 1630m cm⁻¹. The ν (P-H) vibration occurs at 2680s cm⁻¹ and $P=O$ vibrations occur at 1130vs, 998vs and 921vs cm^{-1} . The other observed ligand vibrations are identical to those in **1.**

Fractional atomic coordinates for the non-hydrogen atoms in **1** and 2 are given in Tables 2 and 3, respectively with selected comparative bond lengths and angles listed in Table 4. Figure 2 shows a perspective view of 2 with phenyl rings omitted for clarity. The geometries of the central cores of **1** and 2 are identical. Both platinum atoms have essentially planar coordination geometries with a

maximum deviation of 0.1 A (for P(3)). Both **1** and 2 possess a crystallographic centre of symmetry at the centre of the Pt_2P_2 ring resulting in the ring being planar. All of the $Pt-P$ bond lengths are identical and the bridging is symmetric. The phosphorus bridges produce a contraction of the $P(3)$ -Pt-P(3') angle (75°) form normal square planar geometry. This is undoubtedly due to the desire of the bridging phosphorus atoms to retain normal tetrahedral geometry. The Pt-P (3) -Ph and Pt'-P (3) -Ph angles are 110.1(4) and 113.7(4)' in **1** and 109.4(3) and 111.6(3)[°] in 2. The Pt-P(3)-Pt' angles are $104.9(1)$

TABLE 2. Atom coordinates (X104) and temperature factors $(A² \times 10³)$ for 1 with e.s.d.s in parentheses

Atom	x	y	z	$U_{\bf eq}^{}$ a
Pt	3921(1)	4231(1)	225(1)	$26(1)^*$
P(1)	2257(2)	4583(2)	124(1)	$31(1)^*$
C(1)	1905(10)	5648(9)	$-445(5)$	39(3)*
C(2)	2192(11)	5535(11)	$-1089(7)$	$62(3)*$
C(3)	1925(12)	6337(13)	$-1566(7)$	$77(3)^*$
C(4)	1371(13)	7211(13)	$-1372(9)$	96(3)*
C(5)	1115(11)	7285(11)	$-740(11)$	$91(3)^*$
C(6)	1359(10)	6537(10)	$-267(7)$	52(3)*
C(7)	1741(10)	4978(8)	894(5)	$37(3)^*$
C(8)	792(10)	4794(12)	1042(7)	$58(3)$ *
C(9)	430(11)	5124(12)	1632(7)	$69(3)$ *
C(10)	1000(13)	5601(12)	2066(8)	$78(3)^*$
C(11)	1944(15)	5827(12)	1946(7)	$85(3)$ *
C(12)	2354(11)	5492(10)	1364(6)	56(3)*
C(13)	1498(10)	3509(9)	$-207(6)$	48(3)*
P(2)	3760(2)	2485(2)	623(1)	$31(1)^*$
C(14)	2749(9)	2238(9)	1144(5)	$38(3)$ *
C(15)	2645(10)	2893(11)	1679(5)	$50(3)^*$
C(16)	1844(12)	2801(12)	2073(6)	$68(3)$ *
C(17)	1182(12)	2060(12)	1958(7)	$74(3)$ *
C(18)	1238(11)	1379(12)	1429(8)	$74(3)^*$
C(19)	2036(11)	1467(10)	1009(7)	59(3)*
C(20)	4773(9)	1975(8)	1123(4)	34(2)*
C(21)	5194(10)	2613(9)	1604(5)	$41(3)$ *
C(22)	5930(11)	2248(11)	1998(5)	55(3)*
C(23)	6282(11)	1193(12)	1917(6)	59(3)*
C(24)	5860(11)	563(10)	1448(7)	$60(3)$ *
C(25)	5135(10)	952(9)	1049(6)	$43(3)^*$
C(26)	3625(10)	1572(9)	$-72(5)$	$40(3)^*$
P(3)	5595(2)	4123(2)	195(1)	29(1)*
C(31)	5940(9)	2999(9)	$-293(5)$	$38(3)*$
C(32)	6633(10)	2235(9)	$-50(7)$	$46(3)*$
C(33)	6899(12)	1394(10)	$-423(8)$	$70(3)^*$
C(34)	6521(12)	1248(10)	$-1043(9)$	76(3)*
C(35)	5844(12)	1945(11)	$-1289(6)$	$63(3)^*$
C(36)	5538(10)	2845(9)	$-927(5)$	45(3)*
Cl(1)	3004(4)	2596(4)	$-1712(2)$	$87(1)^*$
Cl(2)	4193(4)	4549(3)	$-2172(2)$	99(2)*
C(40)	651(6)	1170(6)	$-1354(3)$	$104(3)^*$
Cl(3)	999(6)	435(6)	$-684(3)$	191(3)*
Cl(4)	– 479(6)	1702(6)	$-1310(3)$	$198(3)$ *

^aStarred items: equivalent isotropic U defined as one third of the trace of the orthogonalised U_{ii} tensor.

162

aStarred items; equivalent isotropic U defined as one third of the trace of the orthogonalised U_{ij} tensor.

TABLE 4. Selected bond lengths (A) **and angles** $(°)$ **in 1 and** 2^a

	1	2
$Pt-P(1)$	2.341(3)	2.336(1)
$Pt-P(2)$	2.338(3)	2.339(2)
$Pt-P(3)$	2.319(3)	2.334(1)
$Pt-P(3')$	2.330(3)	2.326(2)
$P(3) - C(31)$	1.792(11)	1.809(8)
$Pt - P(3) - Pt'$	104.9(1)	105.4(1)
$P(3) - Pt - P(3')$	75.1(1)	74.6(1)
$P(1) - Pt - P(2)$	93.5(1)	96.5(1)
$P(1) - Pt - P(3')$	95.5(1)	95.9(1)
$P(2) - Pt - P(3)$	93.5(1)	93.3(1)
$Pt-P(3)-C(31)$	110.1(4)	109.4(3)
$Pt'-P(3)-C(31)$	113.7(4)	111.6(3)

 a_{P-C} bond lengths in the PMePh₂ ligands are normal, in the range 1.81-1.83 A.

Fig. 2. The X-ray crystal structure of $[(PPh₂Me)₂Pt(\mu PPhH)Pt(PPh₂Me)₂][Cl₂[PhPO₂(OH)]₂[PhPO(OH)₂]₂ (2),$ phenyl rings omitted for clarity. The central, metal containing core in 1 has an identical structure.

and $105.4(1)^\circ$ in 1 and 2, respectively. The *trans*annular $P(3) \dots P(3')$ distance is 2.82 Å and the Pt...Pt' separation is 3.7 A in both structures. In **1** there are no anion-cation interactions although, interestingly, there is a short $Cl(1)...Cl(2)$ contact of 3.10 A. In 2 the alkylphosphate groups hydrogen bond to the chloride ion $(H(10)...C12.0 \text{ Å}, O(1)...C1)$ 2.90 Å, $O(1)$ -H (10) ...Cl 152°) and there is a strong O-H.. .O bond between adjacent alkylphosphates (H(30)...0(4) 1.56 A, 0(3)...0(4) 2.51 A, 0(3)- $H(30)$... $O(4)$ 163^o).

Acknowledgement

We are grateful to Johnson Matthey for **loans** of precious metals.

References *⁵*

- F. A. Cotton and G. Wilkinson, *Advanced Inorganic Chemistry*, Wiley, London, 5th edn., 1988.
- R. A, Jones and M. H. Seeberger, Inorg. *Synth.. 25 (1989) 173.*
- I. P. Parkin. A. M. 2. SIawin, D. J. Williams and J. D. *Woollins, Polyhedron, 8 (1989) 1979.*
- P. T. Wood and J. D. Woollins, *J. Chem. Sot., Chem.* Commun., (1988) 1190.
- J. C. Fitzmaurice, D. J. Williams, P. T. Wood and J. D. Woollins,J. *Chem. Sot., Chem.* Commun., (1988) 741.
- *6* J. C. BaiIar and H. Itatani,fnorg. *Chem., 4 (1965) 1618.*
- W. M. A. Henderson, M. Epstein and F. S. Seichter, *J. Am. Chem. Sot., 85 (1963) 2462.*
- *G.* M. Sheldrick, *SHELXTL,* an integrated system for solving, refining and displaying crystal structures from diffraction data, University of Gottingen, 1978; Revision 4.1, 1983.
- 9 P. S. Pregosin and R. W. Kunz, $3^{1}P$ and $1^{3}C$ NMR of *Transition Metal Phosphine Complexes,* Springer, Berlin, 1979.