The Preparation and X-ray Characterisation of $[(PPh_2Me)_2Pt(\mu-PPhH)_2Pt(PPh_2Me)_2][Cl]_4 \cdot \frac{3}{2}CH_2Cl_2$ and $[(PPh_2Me)_2Pt(\mu-PPhH)Pt(PPh_2Me)_2][Cl]_2[PhPO_2OH]_2[PhPO(OH)_2]_2$

IVAN P. PARKIN, ALEXANDRA M. Z. SLAWIN, DAVID J. WILLIAMS and J. DEREK WOOLLINS* Department of Chemistry, Imperial College, South Kensington, London SW7 2AY (U.K.) (Received October 2, 1989)

Abstract

Reaction of (PPh)₅ with PtCl₂(PR₃)₂ in CH₂Cl₂ gives [(PPh₂Me)₂Pt(μ -PPhH)₂Pt(PPh₂Me)₂][Cl]₄. $\frac{3}{2}$ CH₂Cl₂(1) or [(PPh₂Me)₂Pt(μ -PPhH)Pt(PPh₂Me)₂]-[Cl]₂[PhPO₂OH]₂[PhPO(OH)₂]₂ (2) as shown by microanalyses and X-ray crystallography. The reaction appears (on the basis of ³¹P NMR) to proceed via *trans*-Pt(PR₃)₂(PPhH)Cl. The X-ray structures of 1 and 2 reveal, in both cases, planar coordination of the platinum atoms with a planar Pt₂P₂ central ring. The P-Pt-P and Pt-P-Pt angles are 105 and 75°, respectively. All Pt-P bond lengths are equivalent.

Introduction

Although bimetallic platinum compounds are quite common when bridged by halides, chelating phosphorus-oxygen and phosphite ligands [1], binuclear platinum compounds with pnictide group bridging atoms are rare. Examples are $[Rh(\mu-t Bu(H)P(PMe_3)_2]_2$ and $[Ni(\mu-t-Bu(H)P)(PMe_3)_2]_2$ [2] formed from the reaction of the appropriate dichlorobis(trimethylphosphine)metal complex and (H)(t-Bu)PLi. We have synthesised $[(R_3P)_2Pt(\mu NH_{2}$ Pt(PR₃)₂ [BF₄]₂ from the reaction of PtCl₂- $(PR_3)_2$ with sodium metal and HBF₄ in liquid ammonia [3]. We are involved in the study of $(PPh)_5$ with a variety of reagents [4, 5]. Here we report the reaction of $PtCl_2(PR_3)_2$ with $(PPh)_5$ which yields compounds with the central $Pt(\mu-PPhH)_2Pt$ dimer core. The compounds have been characterised by microanalyses, X-ray crystallography and infrared spectroscopy.

Experimental

General

All reactions were carried out under an inert atmosphere using standard Schlenk line techniques unless stated otherwise. Solvents were distilled prior to use; CH_2Cl_2 from CaH_2 and n-hexane from Na/ benzophenone. C_6D_6 was dried over 3A molecular sieves. ³¹P {¹H} NMR spectra were obtained on a Jeol FX90Q spectrometer operating at 36.21 MHz and referenced to external H₃PO₄. Infrared spectra were obtained on a Perkin-Elmer 1720X instrument using KBr discs. Microanalyses was provided by the Imperial College Microanalytical Service and Pascher Microanalytical laboratory, F.R.G., PtCl₂(PR₃)₂ were prepared from Pt(COD)Cl₂ and the stoichiometric quantity of free phosphine [6]. (PPh)₅ was made by reaction of PPhCl₂ and magnesium in toluene by the standard procedure [7].

Preparation of the Complexes

Cyclopentaphosphine (PPh)₅ (0.0243 g, 0.045 mmol) was dissolved in degassed CH_2Cl_2 (20 ml) at room temperature. $PtCl_2(PMePh_2)_2$ (0.060 g, 0.090 mmol) was added and the mixture stirred at room temperature for five days. The solvent was reduced to *c*. 2 ml *in vacuo*. Degassed C_6D_6 (0.5 ml) was added and the ³¹P{¹H} spectra recorded. Addition of n-hexane (15 ml) gave colourless crystals of ($Pt(\mu$ -PPhH)(PMePh_2)_2Cl_2)_2 (1) (0.038 g, 0.0245 mmol, 54%). *Anal.* Calc. for [$Pt(\mu$ -PPhH)(PMe-Ph_2)_2]_2Cl_4 \cdot 1.5CH_2Cl_2: C, 48.6; H, 4.1; Cl, 9.5. Found: C, 48.7; H, 4.1; Cl, 7.9.

When the reaction was carried out in non-degassed solvents in air, the product was (in the case of PtCl₂-(PMePh₂)) [(PPh₂Me)₂Pt(μ -PPhH)₂Pt(PPh₂Me)₂]Cl₂-[PhPO₂OH]₂[PhPO(OH)₂]₂ (2) in 42% yield. *Anal.* Calc. for CH₂Cl₂ solvate: C, 48.2; H, 4.2; Cl, 6.4; P, 14.1; O, 8.7. Found: C, 48.5; H, 4.3; Cl, 5.8; P, 13.1; O, 8.5.

X-ray Studies

Crystal data: $C_{64}H_{64}P_6Pt_2 \cdot 4Cl \cdot 1.5(CH_2Cl_2)$ (1), M = 1674.0, monoclinic, a = 13.812(8), b = 12.481. (6), c = 20.339(10) Å, $\beta = 91.90(5)^{\circ}$, V = 3504 Å³, space group $P2_1/n$, Z = 2 (the molecule is disposed about a centre of symmetry), $D_c = 1.59$ g cm⁻³, Cu radiation, $\lambda = 1.54178$ Å, μ (Cu K α) = 116 cm⁻¹, F(000) = 1642.

© Elsevier Sequoia/Printed in Swizterland

^{*}Author to whom correspondence should be addressed.

Data were measured on a Nicolet R3m diffractometer with Cu Ka radiation (graphite monochromator) using ω -scans. A crystal of dimensions 0.17 X 0.17 X 0.23 mm was used. A total of 3840 independent reflections $(2\theta < 116^{\circ})$ were measured, of which 3458 had $|F_o| > 3\sigma(|F_o|)$ and were considered to be observed. The data were corrected for Lorentz and polarisation factors. Due to a c. 50% decomposition of the sample during the data collection and also its encapsulation in epoxy resin no absorption correction was applied. The structure was solved by direct methods. The non-hydrogen atoms were refined anisotropically. A ΔF map revealed the presence of a 75% dichloromethane molecule. The positions of the hydrogen atoms were idealised, C-H = 0.96 Å, P-H = 1.33 Å, assigned isotropic thermal parameters, $U(H) = 1.2 U_{eo}(C)$ and allowed to ride on their parent carbon atoms. The methyl groups were refined as idealised rigid bodies. Refinement was by block-cascade full-matrix leastsquares to R = 0.063, $R_w = 0.060$ $[w^{-1} = \sigma^2(F)$ + $0.00050F^2$]. The maximum and minimum residual electron densities in the final ΔF map were 4.18 and -1.59 e A⁻³, respectively. The mean and maximum shift/error in the final refinement were 0.015 and 0.094, respectively.

Crystal data: $[C_{64}H_{64}P_6Pt_2] \cdot 2[Cl] \cdot 2[C_6H_6O_3P] \cdot 2[C_6H_7O_3P]$ (2), M = 2111, triclinic, a = 13.375(2), b = 13.520(2), c = 15.052(2) Å, $\alpha = 92.55(1)$, $\beta = 107.02(1)$, $\gamma = 118.86(1)^\circ$, V = 2223 Å³, space group $P\overline{1}$, Z = 1 (the molecule is disposed about a centre of symmetry), $D_c = 1.58$ g cm⁻³, Cu radiation, $\lambda = 1.54178$ Å, μ (Cu K α) = 86 cm⁻¹, F(000) = 1050.

Data were measured on a Nicolet R3m diffractometer with Cu Ka radiation (graphite monochromator) using ω scans. A crystal of dimensions 0.07 X 0.07 X 0.33 mm was used. A total of 6001 independent reflections $(2\theta \le 116^\circ)$ were measured, of which 5456 had $|F_0| > 3\sigma(|F_0|)$ and were considered to be observed. The data were corrected for Lorentz and polarisation factors; a numerical absorption correction (face-indexed crystal) was applied; maximum and minimum transmission factors 0.638 and 0.311. The structure was solved by direct methods. The non-hydrogen atoms were refined anisotropically. The hydroxy protons on the alkylphosphates were located from a ΔF map and refined isotropically. The positions of the remaining hydrogen atoms were idealised, C-H = 0.96 Å, P-H = 1.33 Å, assigned isotropic thermal parameters, $U(H) = 1.2 U_{eq}(C)$ and allowed to ride on their parent carbon atoms. The methyl groups were refined as rigid bodies. Refinement was by blockcascade full-matrix least-squares to R = 0.042, $R_w =$ 0.043 $[w^{-1} = \sigma^2(F) + 0.00094F^2]$. The maximum and minimum residual electron densities in the final ΔF map were 1.37 and -1.79 e Å⁻³, respectively. The mean and maximum shift/error in the

final refinement were 0.010 and 0.147, respectively. Computations were carried out on an Eclipse S140 computer using the SHELXTL program system [8].

Results and Discussion

Treatment of PtCl₂(PR₃)₂ with (PPh)₅ in CH₂Cl₂ produces $Pt(\mu$ -PPhH)₂Pt dimers 1 and 2 in reasonable yield. We have performed the reaction under an inert atmosphere and in air. Monitoring of the anaerobic reaction by ³¹P {¹H} NMR (Fig. 1) reveals an intermediate whose spectrum consists of a triplet and a doublet $({}^{2}J({}^{31}P-{}^{31}P)$ 20 Hz) with platinum satellites as well as minor impurities. The intermediate is postulated as trans-PtCl(PPhH)(PR₃)₂. It is observed in solution after c. 1 day and is the main species in the solution after five days. The intermediate has ${}^{1}J{}^{195}Pt-{}^{31}P$ couplings of c. 2400 Hz (2P, doublet) and c. 3500 Hz (1P, triplet) (Table 1). This is consistent with the structure proposed in Fig. 1. The trans PR₃ groups would account for the low value of ${}^{1}J$ coupling $(trans-PtCl_{2}(PR_{3})_{2})$ has a

Fig. 1. ${}^{31}P{}^{1}H$ NMR (CDCl₃ solution) of the crude reaction between PtCl₂(PEt₃)₂ and (PPh)₅.

TABLE 1. ³¹P NMR data for the intermediates observed during the formation of 1 and 2^a

Compound		δA	δx	${}^{1}J_{A}$	${}^{1}J_{\mathbf{X}}$	$^{2}J_{AX}$
1a		17.9	10.0	2270	3460	21
1c		10.4	-4.3	2428	3620	20
	δA	δx	δM	${}^{1}J_{\mathbf{A}}$	${}^{1}J_{\mathrm{X}}$	$^{2}J_{AX}$
2a	$\frac{\delta_{\mathbf{A}}}{16.5}$	δ _X 49.6	δ _M 21.4	¹ <i>J</i> _A 2240	¹ J _X 3883	² J _{AX} 22
2a 2b	$\frac{\delta_{\mathbf{A}}}{16.5}$ -4.8	δ _X 49.6 47.9	^δ M 21.4 22.3	¹ <i>J</i> _A 2240 2250	¹ J _X 3883 3882	² J _{AX} 22 22

 ${}^{a}a = PEt_3$, $b = PMe_2Ph$, $c = PMePh_2$; ${}^{1}J = {}^{31}P_{-}{}^{195}Pt$; ${}^{2}J = {}^{31}P_{-}{}^{31}P$; resonance A is a doublet of intensity 2, resonance X is a triplet intensity 1, resonance M is a singlet.

¹J coupling of c. 2400 Hz [9]. The PPhH⁻ anion trans to chloride would be expected to have a large value of ¹J (${}^{1}J{}^{195}Pt{}^{-31}P$ } in cis-PtCl₂(PR₃)₂ is c. 3500 Hz). The two equivalent PR₃ groups are split by the cis PPhH phosphorus into a doublet (cis ${}^{2}J{}^{31}P{}^{-31}P$ } = 19 Hz) and the PPhH phosphorus consequently appears as a triplet. Without proton decoupling the triplet is split into two sets of multiplets with ¹J { ${}^{1}H{}^{-31}P$ } of 460 Hz, confirming the presence of a P-H bond.

In the case of the reaction carried out in air the ³¹P NMR of the intermediate has a similar pattern although the triplet is shifted to higher field by c. 50 ppm adn the magnitude of the ¹J {¹⁹⁵ Pt-³¹P} coupling constant has increased by c. 200 Hz. The resonance due to the *trans*-PR₃ ligands is unaltered from the anaerobic case. The large change in δ^{31} P for the triplet implies that the group *trans* to PPhH⁻ is different, possibly of the type OPO since we observe additional ³¹P resonances around c. 25 ppm in this case; we propose that the intermediate includes coordinated PhPO₃²⁻.

The study of the reactivity of $(PPh)_5$ with $PtCl_2$ - $(PR_3)_2$ where PR_3 is PEt_3 or PMe_2Ph , failed to produce crystals of the expected dimeric compound yielding instead yellow oils. No reaction occurred in the case of PR_3 = dppe, probably as the required *trans* geometry of the intermediate could not be obtained for this chelating ligand.

The product in both the aerobic and anaerobic reactions where $PR_3 = PMePh_2$ crystallised out of the reaction mixture on the addition of n-hexane. Once formed both $[(PPh_2Me)_2Pt(\mu-PPhH)_2Pt(PPh_2-Me)_2][Cl]_4 \cdot 3/2CH_2Cl_2$ (1) and $[(PPh_2Me)_2Pt(\mu-PPhH)Pt(PPh_2Me)_2][Cl]_2[PhPO_2OH]_2[PhPO-$

 $(OH)_2]_2$ (2) are insoluble in all common organic solvents, thus no ³¹P NMR studies on these species were possible. Furthermore the mass spectra of these species (in the FAB mode) were unsatisfactory due to the solubility problems. In the EI mode no M⁺ was observable although fragmentation ions due to $[PtCl_2(PR_3)_2]^+$ and PPhH⁺ were seen.

The infrared spectrum of 1 shows the expected vibrations due to the PPh₂Me ligand in addition to a ν (P-H) vibration at 2580 cm⁻¹. 2 has the ν (O-H) vibration at 3440 cm⁻¹ and δ (O-H) at 1630m cm⁻¹. The ν (P-H) vibration occurs at 2680s cm⁻¹ and P=O vibrations occur at 1130vs, 998vs and 921vs cm⁻¹. The other observed ligand vibrations are identical to those in 1.

Fractional atomic coordinates for the non-hydrogen atoms in 1 and 2 are given in Tables 2 and 3, respectively with selected comparative bond lengths and angles listed in Table 4. Figure 2 shows a perspective view of 2 with phenyl rings omitted for clarity. The geometries of the central cores of 1 and 2 are identical. Both platinum atoms have essentially planar coordination geometries with a maximum deviation of 0.1 Å (for P(3)). Both 1 and 2 possess a crystallographic centre of symmetry at the centre of the Pt_2P_2 ring resulting in the ring being planar. All of the Pt-P bond lengths are identical and the bridging is symmetric. The phosphorus bridges produce a contraction of the P(3)-Pt-P(3') angle (75°) form normal square planar geometry. This is undoubtedly due to the desire of the bridging phosphorus atoms to retain normal tetrahedral geometry. The Pt-P(3)-Ph and Pt'-P(3)-Ph angles are 110.1(4) and 113.7(4)° in 1 and 109.4(3) and 111.6(3)° in 2. The Pt-P(3)-Pt' angles are 104.9(1)

TABLE 2. Atom coordinates $(\times 10^4)$ and temperature factors $(\mathbb{A}^2 \times 10^3)$ for 1 with e.s.d.s in parentheses

Atom	x	у	Z	$U_{\mathbf{eq}}^{\mathbf{a}}$
Pt	3921(1)	4231(1)	225(1)	26(1)*
P(1)	2257(2)	4583(2)	124(1)	31(1)*
C(1)	1905(10)	5648(9)	445(5)	39(3)*
C(2)	2192(11)	5535(11)	-1089(7)	62(3)*
C(3)	1925(12)	6337(13)	-1566(7)	77(3)*
C(4)	1371(13)	7211(13)	-1372(9)	96(3)*
C(5)	1115(11)	7285(11)	-740(11)	91(3)*
C(6)	1359(10)	6537(10)	-267(7)	52(3)*
C(7)	1741(10)	4978(8)	894(5)	37(3)*
C(8)	792(10)	4794(12)	1042(7)	58(3)*
C(9)	430(11)	5124(12)	1632(7)	69(3)*
C(10)	1000(13)	5601(12)	2066(8)	78(3)*
C(11)	1944(15)	5827(12)	1946(7)	85(3)*
C(12)	2354(11)	5492(10)	1364(6)	56(3)*
C(13)	1498(10)	3509(9)	-207(6)	48(3)*
P(2)	3760(2)	2485(2)	623(1)	31(1)*
C(14)	2749(9)	2238(9)	1144(5)	38(3)*
C(15)	2645(10)	2893(11)	1679(5)	50(3)*
C(16)	1844(12)	2801(12)	2073(6)	68(3)*
C(17)	1182(12)	2060(12)	1958(7)	74(3)*
C(18)	1238(11)	1379(12)	1429(8)	74(3)*
C(19)	2036(11)	1467(10)	1009(7)	59(3)*
C(20)	4773(9)	1975(8)	1123(4)	34(2)*
C(21)	5194(10)	2613(9)	1604(5)	41(3)*
C(22)	5930(11)	2248(11)	1998(5)	55(3)*
C(23)	6282(11)	1193(12)	1917(6)	59(3)*
C(24)	5860(11)	563(10)	1448(7)	60(3)*
C(25)	5135(10)	952(9)	1049(6)	43(3)*
C(26)	3625(10)	1572(9)	72(5)	40(3)*
P(3)	5595(2)	4123(2)	195(1)	29(1)*
C(31)	5940(9)	2999(9)	-293(5)	38(3)*
C(32)	6633(10)	2235(9)	50(7)	46(3)*
C(33)	6899(12)	1394(10)	-423(8)	70(3)*
C(34)	6521(12)	1248(10)	-1043(9)	76(3)*
C(35)	5844(12)	1945(11)	-1289(6)	63(3)*
C(36)	5538(10)	2845(9)	-927(5)	45(3)*
Cl(1)	3004(4)	2596(4)	-1712(2)	87(1)*
C1(2)	4193(4)	4549(3)	-2172(2)	99(2)*
C(40)	651(6)	1170(6)	-1354(3)	104(3)*
C1(3)	999(6)	435(6)	-684(3)	191(3)*
C1(4)	-479(6)	1702(6)	-1310(3)	198(3)*

^aStarred items: equivalent isotropic U defined as one third of the trace of the orthogonalised U_{ii} tensor.

TABLE 3. Atom coordinates $(\times 10^4)$ and temperature factors $(A^2 \times 10^3)$ for 2 with e.s.d.s in parentheses

Atom	x	у	Z	$U_{\mathbf{eq}}^{\mathbf{a}}$
Pt	4476(1)	3693(1)	507(1)	33(1)*
P(1)	2553(2)	2057(1)	209(1)	37(1)*
C(1)	1294(5)	2272(5)	-381(5)	41(2)*
C(2)	1274(6)	3204(6)	58(5)	50(2)*
C(3)	341(7)	3379(7)	351(6)	60(2)*
C(4)	-613(7)	2639(8)	-1193(7)	74(2)*
C(5)	-599(7)	1722(8)	-1616(6)	68(2)*
C(6)	348(6)	1537(6)	-1220(5)	50(2)*
C(7)	2273(6)	795(5)	-539(5)	41(2)*
C(8)	2906(7)	970(6)	-1156(5)	50(2)*
C(9)	2766(8)	22(7)	-1700(6)	65(2)*
C(10)	1995(8)	-1089(7)	-1629(6)	68(2)*
C(11)	1364(8)	-1253(7)	-1029(7)	69(2)*
C(12)	1505(7)	-322(6)	-474(6)	55(2)*
C(13)	2226(7)	1632(6)	1268(5)	50(2)*
P(2)	5561(2)	3207(2)	1748(1)	39(1)*
C(14)	4955(6)	1691(6)	1783(5)	45(2)*
C(15)	4697(7)	929(6)	990(6)	55(2)*
C(16)	4230(7)	-245(7)	980(7)	65(2)*
C(17)	4033(8)	-661(7)	1770(7)	76(2)*
C(18)	4268(9)	94(7)	2542(7)	83(2)*
C(19)	4734(7)	1272(7)	2572(6)	63(2)*
C(20)	7074(6)	3638(6)	1718(5)	45(2)*
C(21)	7200(7)	3534(6)	845(5)	51(2)*
C(22)	8312(7)	3800(7)	785(6)	62(2)*
C(23)	9302(8)	4201(8)	1595(7)	79(2)*
C(24)	9193(8)	4306(9)	2462(8)	92(2)*
C(25)	8074(8)	4020(8)	2528(6)	74(2)*
C(26)	5810(8)	3933(7)	2901(5)	58(2)*
P(3)	6179(2)	5509(2)	704(1)	41(1)*
C(31)	6675(8)	6376(7)	1869(5)	69(2)*
C(32)	5838(11)	6517(7)	2150(6)	90(2)*
C(33)	6215(15)	7174(10)	3036(9)	174(3)*
C(34)	7392(16)	7681(11)	3639(9)	238(3)*
C(35)	8217(14)	7560(12)	3376(8)	205(3)*
C(36)	7880(10)	6917(10)	2485(7)	128(3)*
Cl	2733(3)	6105(2)	1819(2)	96(1)*
P(4)	3115(2)	4225(2)	3665(2)	66(1)*
O(1)	2795(8)	4199(6)	2586(5)	106(2)*
O(2)	4478(5)	4813(5)	4137(5)	84(2)*
O(3)	2543(6)	4757(5)	4102(5)	90(2)*
C(41)	2416(7)	2731(7)	3696(5)	59(2)*
C(42)	3112(8)	2247(8)	4059(6)	73(2)*
C(43)	2559(10)	1099(9)	4056(7)	89(2)*
C(44)	1308(10)	391(9)	3694(7)	93(2)*
C(45)	631(9)	854(8)	3339(8)	100(2)*
C(46)	1165(8)	2008(8)	3314(7)	83(2)*
P(5)	3602(3)	7821(2)	4542(2)	77(1)*
O(4)	3842(7)	6889(5)	4819(5)	91(2)*
O(5)	3095(11)	7692(9)	3449(6)	151(2)*
O(6)	4759(7)	8976(6)	5000(6)	104(2)*
C(51)	2385(10)	7709(9)	4891(7)	92(2)*
C(52)	1294(15)	6816(18)	4522(17)	440(3)*
C(53)	393(17)	6699(19)	4841(18)	362(3)*
C(54)	514(16)	7375(18)	5435(11)	241(3)*
C(55)	1557(14)	8539(15)	5685(9)	185(3)*
C(56)	2456(13)	8608(13)	5426(9)	135(3)*

aStarred items; equivalent isotropic U defined as one third of the trace of the orthogonalised U_{ij} tensor.

TABLE 4. Selected bond lengths (Å) and angles (°) in 1 and $2^{a}\,$

	1	2
Pt-P(1)	2.341(3)	2.336(1)
Pt-P(2)	2.338(3)	2.339(2)
Pt-P(3)	2.319(3)	2.334(1)
Pt-P(3')	2.330(3)	2.326(2)
P(3)-C(31)	1.792(11)	1.809(8)
PtP(3)Pt'	104.9(1)	105.4(1)
P(3) - Pt - P(3')	75.1(1)	74.6(1)
P(1) - Pt - P(2)	93.5(1)	96.5(1)
P(1) - Pt - P(3')	95.5(1)	95.9(1)
P(2) - Pt - P(3)	93.5(1)	93.3(1)
Pt - P(3) - C(31)	110.1(4)	109.4(3)
Pt' - P(3) - C(31)	113.7(4)	111.6(3)

 $^{a}P-C$ bond lengths in the PMePh₂ ligands are normal, in the range 1.81-1.83 Å.

Fig. 2. The X-ray crystal structure of $[(PPh_2Me)_2Pt(\mu-PPhH)Pt(PPh_2Me)_2][Cl]_2[PhPO_2(OH)]_2[PhPO(OH)_2]_2$ (2), phenyl rings omitted for clarity. The central, metal containing core in 1 has an identical structure.

and $105.4(1)^{\circ}$ in 1 and 2, respectively. The *trans*annular P(3)...P(3') distance is 2.82 Å and the Pt...Pt' separation is 3.7 Å in both structures. In 1 there are no anion-cation interactions although, interestingly, there is a short Cl(1)...Cl(2) contact of 3.10 Å. In 2 the alkylphosphate groups hydrogen bond to the chloride ion (H(10)...Cl 2.0 Å, O(1)...Cl 2.90 Å, O(1)-H(10)...Cl 152°) and there is a strong O-H...O bond between adjacent alkylphosphates (H(30)...O(4) 1.56 Å, O(3)...O(4) 2.51 Å, O(3)-H(30)...O(4) 163°).

Acknowledgement

We are grateful to Johnson Matthey for loans of precious metals.

References

- 1 F. A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, Wiley, London, 5th edn., 1988.
- 2 R. A. Jones and M. H. Seeberger, Inorg. Synth., 25 (1989) 173.
- 3 I. P. Parkin, A. M. Z. Slawin, D. J. Williams and J. D. Woollins, Polyhedron, 8 (1989) 1979.
- 4 P. T. Wood and J. D. Woollins, J. Chem. Soc., Chem. Commun., (1988) 1190.
- 5 J. C. Fitzmaurice, D. J. Williams, P. T. Wood and J. D. Woollins, J. Chem. Soc., Chem. Commun., (1988) 741.
- 6 J. C. Bailar and H. Itatani, Inorg. Chem., 4 (1965) 1618.
- 7 W. M. A. Henderson, M. Epstein and F. S. Seichter, J. Am. Chem. Soc., 85 (1963) 2462.
- 8 G. M. Sheldrick, *SHELXTL*, an integrated system for solving, refining and displaying crystal structures from diffraction data, University of Gottingen, 1978; Revision 4.1, 1983.
- 9 P. S. Pregosin and R. W. Kunz, ³¹P and ¹³C NMR of Transition Metal Phosphine Complexes, Springer, Berlin, 1979.