DALE A. FIRMIN, ESTELLE R. QUILANO, ROBERT CAMERON, ARUN K. PANT*, EDWIN D. STEVENS, CHARLES J. O'CONNOR**

Department of Chemistry, University of New Orleans, New Orleans, LA 70148 (U.S.A.)

OLIVIER KAHN and TALAL MALLAH

Laboratoire de Chimie Inorganique, URA #420, Université de Paris-Sud, 91405 Orsay (France)

(Received December 21, 1989)

Abstract

The properties of two binuclear copper(II) complexes prepared from the same binucleating ligand are reported. The binuclear units are structurally very similar, but one binuclear unit incorporates a bromine ion into a bridging position, while the other binuclear unit incorporates a hydroxide into the bridge. The intramolecular coupling parameters are 2J = -157 cm^{-1} and $2J = -478 cm^{-1}$ for the bromide and hydroxide bridging analogs, respectively. The hydroxide analog has the unusual feature of a $[Cu_6I_{10}]^{4-}$ hetero-polyanion. Crystal data: complex A, $[Cu_2(C_{17}H_{27}N_4O)(OH)(CH_3CN)]_2[Cu_6I_{10}], a =$ 10.476(3), b = 11.846(6), c = 13.558(7) Å, $\alpha =$ 97.77(4), $\beta = 99.62(3)$, $\gamma = 96.33(3)^{\circ}$, space group $P\bar{1}, Z = 2;$ complex **B**, $[C_{17}H_{27}N_4O)(Br)]Br_2, a =$ 11.836(2), b = 16.543(4), c = 23.021(5) Å, space group Pbca, Z = 8.

Introduction

We have recently published several reports of binuclear copper(II) complexes that have dissimilar bridging pathways [2–9]. The complexes have the general structure as shown in 1. The bridging pathways consist of an endogenous phenoxide bridge contained in the binucleating ligand, and a smaller exogeneous bridging ligand (Y). In our previous reports we have prepared a variety of complexes with $Y = CI^{-}[1]$, $Br^{-}[2]$, $OH^{-}[3-5]$, $1,1-N_{3}^{-}[4-6]$, $1,1-OCN^{-}[4-6]$ and $1,3-N_{3}^{-}[7]$.

There has recently been interest in copper binuclear compounds as chemical models which emulate blue copper proteins [8-12]. Cu(II) complexes analogous to 1, but with lysine, glutamic acid and arginine side arms (N X), have been shown to have catecholase activity [13, 14]. There have been recent reports of reversible molecular oxygen binding in dinuclear copper complex systems [15, 16]. These types of binuclear copper complexes are potential models for oxyhemocyanin.

The complexes that we have been preparing allow the incorporation of various small molecules into the bridging cavity. Our interest in these complexes arises from the unique ability to make subtle changes in the super exchange pathway by varying the exogenous bridging ligand (Y). We report here on the synthesis, crystal structure and magnetic properties of two new binuclear copper(II) complexes: $[Cu_2L(\mu-Br)]Br_2$ and $[Cu_2L(\mu-OH)(CH_3CN)]_2[Cu_6I_{10}]$. The two complexes exhibit normal intra-binuclear antiferromagnetic coupling with singlet triplet splittings of 2J = -478 cm⁻¹ and 2J = -157 cm⁻¹ for the hydroxide and bromide bridged complexes, respectively.

© Elsevier Sequoia/Printed in Switzerland

^{*}Permanent address: Physics Department, University of Gorakhpur, India.

^{**}Author to whom correspondence should be addressed.

Experimental

Synthesis

2-Formyl-4-methylsalicylaldimine (Fsal)

Fsal was prepared by the method of Ullman and Brittner [17].

$[Cu_{2}L(\mu-OH)(CH_{3}CN)]_{2}[Cu_{6}I_{10}](A)$

One half mmol Fsal was dissolved in 5 ml 95% EtOH. To this was added 1 mmol DMEN, and 1 mmol of $Cu(BF_4)_2$ dissolved in a small amount of CH_3CN . Next, 2 mmol KI dissolved in a few drops of H_2O were added. After a few days, two types of crystals appeared. One was needle-shaped and slightly soluble in CH_3CN . The other was polygonal and soluble in CH_3CN . The needle-like crystals were separated by washing away the co-precipitate with CH_3CN and drying. The other crystals were recovered by allowing the wash solution to stand and have not yet been characterized.

$[Cu_2L(\mu-Br)]Br_2(B)$

A 0.200 g sample of Fsal and a 0.545 g sample of copper(II) bromide were dissolved in 50 ml of methanol heated to 70 °C. To this solution, 0.215 g of dimethylethylenediamine was slowly added while stirring. The blue-green liquid turned to aqua upon addition of the dimethylethylenediamine. The solution was stirred for 20 min, forming lime colored microcrystals. The filtered solution was then allowed to evaporate for a few days to 20 ml. The dark olive colored crystals were filtered, washed in methanol, air dried and then dissolved in a solution containing 20 ml of acetonitrile and 30 ml of methanol. The resulting solution was slowly evaporated to about 3 ml. The dark green needle-shaped crystals were then filtered, washed in absolute ethanol and air dried.

Magnetism

The magnetic susceptibilities of the complexes were measured over the 6-350 K temperature region with a superconducting SQUID susceptometer. Measurement and calibration procedures are reported elsewhere [18]. See also 'Supplementary Material'.

Crystallography

Collection and reduction of intensity data

For each of the compounds, single crystal samples were mounted on an Enraf-Nonius CAD-4 four-circle diffractometer. The samples were cooled to 115(2) K using a stream of cold nitrogen gas generated with a locally modified Enraf-Nonius low temperature device. Cell dimensions were determined by leastsquares refinement of the measured setting angles of 25 reflections in the range $20^{\circ} < \theta < 30^{\circ}$. Space groups were determined by searching for systematically absent reflections, and later confirmed by successful solution of the structure.

Integrated intensity measurements were collected using Mo Ka radiation, a graphite-crystal monochromator, and a θ :2 θ scan mode. Scan widths were determined from the formula $SW = A + B \tan\theta$, where the second term accounts for the $K\alpha_1 - K\alpha_2$ splitting. The calculated scan extended at each side by SW/4 for background measurements (BG1 and BG2). The net integrated intensity of each peak was then calculated as $I_{NC} = I_{2/3} - 2(BG1 + BG2)$, where $I_{2/3}$ is the integrated intensity of the central two-thirds portion of the scan. During data collection, three standard reflections were monitored every two hours for changes in intensity, and three high-angle reflections were re-centered after every 200 reflections measured to check for changes in crystal orientation. Decay corrections were calculated from linear leastsquares fits to the intensities of the standard reflections. Empirical absorption corrections were applied based on observations of the intensities of three reflections as a function of rotation ψ about the scattering vector. The data were corrected for Lorentz and polarization effects.

Crystal data, intensity measurement conditions and data reduction results are summarized for both compounds in Table 1.

Solution and refinement of structures

The structures of both complexes were solved by direct methods using the program MULTAN80 [19]. The Cu and halogen atom positions were located in the initial E maps, and successive difference Fourier syntheses alternated with full-matrix least-squares refinements revealed the positions of all non-hydrogen atoms. The function $S = \Sigma w (F_o - F_c)^2$ was minimized where $w = 1/(\sigma(F_o))^2$. Standard deviations were estimated by $\sigma(F_o^2) = (\sigma)_{cs}^2 + (0.04F^2)^2)^{1/2}$ where σ_{cs} represents the contribution from counting statistics. Hydrogen atom positions were calculated and included with fixed positions and isotropic thermal parameters. Anisotropic thermal parameters were refined for the Cu and halogen atoms. All other atoms were refined isotropically. Attempts to refine the C, N and O atoms with anisotropic thermal parameters resulted in unrealistic thermal ellipsoids for compound **A**. This may be attributed to errors in the absorption corrections, which could not be reliably calculated because of the irregular shape of the crystal. These errors are also likely to be responsible for the relatively high final R factors. The small size and lack of scattering at high angles from crystals of compound B resulted in a large fraction of 'unobserved' reflections, limiting the number of atoms which could be refined anisotropically. All significant peaks in the final difference Fourier maps were located within 0.6 Å of the Cu or halogen atom positions. Comparison of the magnitudes of F_{o} and

TABLE 1. Crystallographic experimental details

Compound	Α	B
a (Å)	10.475(3)	11.836(2)
b (Å)	11.846(6)	16.543(4)
c (Å)	13.558(7)	23.021(5)
α (°)	97.77(4)	90.0
β (°)	99.62(3)	90.0
γ (°)	96.33(3)	90.0
$V(A^3)$	1628.2	4507.1
Crystal system	triclinic	orthorhombic
Space group	РĪ	Pbca
$D_{\text{calc}} (g/\text{cm}^3)$	2.680	1.975
Z	2	8
Temperature (K)	115(2)	115(2)
Empirical formula	Cu ₅ I ₅ O ₂ N ₅ C ₁₉ H ₃₁	$Cu_2Br_3O_1N_4C_{17}H_{27}$
Molecular weight	1313.7	670.2
Wavelength Ka ₁ (Å)	0.70930	0.70930
Wavelength Ka ₂ (A)	0.71359	0.71359
Crystal color, habit	black, irregular needle	dark green, needle
Crystal size (mm)	$0.5 \times 0.5 \times 0.7$	$0.3 \times 0.1 \times 0.1$
μ (cm ⁻¹)	79.4	71.8
Crystal decay (%)	3.4	5.1
Range, transmission	0.743 to 0.996	0.926 to 0.995
Limits, 20 (°)	4 to 50	4 to 40
Limits, h	-11 to 11	0 to 11
Limits, k	-12 to 12	0 to 14
Limits, l	0 to 14	0 to 22
Scan width, A (°)	1.1	1.0
Scan width, B (°)	0.35	0.35
No. reflections	3241	2091
No. reflections with $I > 3r(I)$	3081	1081
No. parameters	171	134
R	0.078	0.044
R _w	0.089	0.048
GÖF	11.41	1.34
Max. shift/e.s.d.	0.03	0.01
Max. residual (e/A^3)	2.29	0.66
Min. residual (e/Å ³)	2.17	-0.48

 F_{c} for the largest structure factors showed no indication of secondary extinction, and no correction was applied.

Atomic scattering factors and anomalous dispersion corrections were taken from the International Tables for X-ray Crystallography [20]. All computer programs used were from the SDP system [21].

Results and Discussion

Structure

The final positional parameters for the binuclear Cu(II) complexes A and B are listed in Table 2. Bond distances and angles are given in Tables 3 and 4, respectively. Figures 1(a)-(c) and 2 show perspective views of the molecules together with the numbering schemes.

The main ligand, Fsal, in these complexes is pentadentate and capable of binding two transition metal ions in close proximity. A sixth in-plane bridging coordination site, and the possibility of axial or bridging ligands above and below the plane, generates a large number of possible coordination geometries. Except for the dimethylaminoethane side chains, the Fsal ligand is highly planar in both complexes. The bond lengths and angles within the ligand are very similar in both complexes and comparable to those observed in binuclear Cu(II) complexes of 2,6-bis(N-2-pyridylformidolyl)-4-methylphenol [2, 22], a similar ligand.

In complex A, an OH⁻ ion occupies the bridging position. Each Cu atom is five coordinate with a square-pyramidal coordination geometry. The axial coordination site of Cu₂ is occupied by a CH₃CN solvent molecule, while the axial coordination site of Cu₁ is occupied by 15 of a $[Cu_6I_{10}]^{4-}$ ion which sits

TABLE 2. Positional parameters and their e.s.d.s in parentheses

Atom	x	у	Z	$B(\mathbb{A}^2)^{a}$
Complex A				
I1	0.3164(2)	0.0591(2)	0.5547(2)	1.10(5)
12	-0.0100(2)	0.2370(2)	0.4290(2)	1.19(5)
13	-0.0238(2)	0.1204(2)	0.7112(2)	1.30(5)
I4	0.2955(2)	-0.0405(2)	0.8320(2)	1.41(5)
15	0.3418(2)	0.3503(2)	0.8199(2)	1.06(5)
Cu1	0.6412(4)	0.3943(3)	0.8320(3)	0.93(8)
Cu2	0.7088(4)	0.6384(3)	0.8069(3)	0.91(8)
Cu3	0.2453(5)	0.1439(4)	0.7525(5)	3.0(1)
Cu4	0.0931(4)	0.1241(4)	0.5606(4)	1.8(1)
Cu5	0.1420(6)	-0.0502(4)	0.6585(5)	3.3(1)
01	0.679(2)	0.547(2)	0.907(2)	1.5(5)*
O2	0.646(2)	0.486(2)	0.723(2)	0.7(4)*
N1	0.697(3)	0.710(2)	0.688(2)	0.9(5)*
N2	0.632(3)	0.254(2)	0.741(2)	0.6(5)*
N3	0.687(3)	0.299(2)	0.942(2)	0.7(5)*
N4	0.759(3)	0.797(2)	0.885(2)	1.0(5)*
N5	0.935(3)	0.594(3)	0.802(3)	2.4(7)*
C1	0.649(3)	0.351(3)	0.306(3)	1.2(6)*
C2	0.647(3)	0.384(3)	0.416(3)	1.0(6)*
C3	0.641(3)	0.310(3)	0.484(3)	0.8(6)*
C4	0.640(3)	0.339(3)	0.586(2)	0.6(6)*
C5	0.649(3)	0.453(3)	0.628(3)	1.2(6)*
C6	0.667(3)	0.537(3)	0.561(3)	0.9(6)*
C7	0.661(3)	0.498(3)	0.459(3)	0.7(6)*
C8	0.683(3)	0.657(3)	0.597(2)	0.5(6)*
C9	0.634(3)	0.250(3)	0.647(3)	0.8(6)*
C10	0.724(3)	0.832(3)	0.714(3)	0.8(6)*
C11	0.803(3)	0.861(3)	0.811(3)	1.1(6)*
C12	0.856(3)	0.806(3)	0.973(2)	0.5(6)*
C13	0.649(3)	0.838(3)	0.914(3)	1.0(6)*
C14	0.633(3)	0.157(3)	0.793(3)	1.1(6)*
C15	0.616(3)	0.184(3)	0.889(3)	1.0(6)*
C16	0.828(3)	0.299(3)	0.959(3)	1.1(6)*
C17	0.650(3)	0.337(3)	1.035(3)	1.3(7)*
018	0.9/1(4)	0.536(3)	0.746(3)	1.6(/)*
C19	1.018(4)	0.456(3)	0.666(3)	2.1(8)*
Complex B				
Br1	0.1285(2)	0.2333(1)	0,60197(9)	2.02(4)
Br2	-0.0121(2)	-0.0902(1)	0.71635(8)	1.67(4)
Br3	-0.0915(2)	0.0670(1)	0.59419(9)	1.79(4)
Cu1	-0.0440(2)	0.2146(1)	0.6566(1)	1.49(5)
Cu2	0.0679(2)	0.0355(1)	0.6557(1)	1.37(5)
0	0.0240(9)	0.1297(6)	0.7043(5)	1.4(2)*
N1	-0.146(1)	0.2408(8)	0.7225(6)	1.3(3)*
N2	0.209(1)	0.0325(8)	0.7009(6)	1.1(3)*
N3	-0.141(1)	0.2928(8)	0.6101(7)	2.0(3)*
N4	0.158(1)	-0.0321(8)	0.5961(6)	1.5(3)*
C1	0.033(1)	0.129(1)	0.7610(8)	1.7(4)*
C2	0.124(1)	0.086(1)	0.7899(7)	1.0(4)*
C3	0.128(1)	0.083(1)	0.8494(7)	1.0(4)*

(continued)

Atom	x	у	Z	$B(\mathbb{A}^2)^{\mathbf{a}}$
Complex B				
C4	0.053(2)	0.122(1)	0.8852(8)	1.8(4)*
C5	-0.030(1)	0.166(1)	0.8597(8)	1.6(4)*
C6	-0.043(1)	0.1710(9)	0.7987(7)	0.8(4)*
C7	0.058(2)	0.115(1)	0.9509(8)	2.7(5)*
C8	0.213(1)	0.0467(9)	0.7551(8)	1.4(4)*
С9	-0.134(1)	0.221(1)	0.7746(7)	1.7(4)*
C10	0.299(2)	-0.008(1)	0.6705(8)	1.8(4)*
C11	-0.235(2)	0.297(1)	0.7057(8)	2.0(4)*
C12	0.250(2)	-0.068(1)	0.6305(8)	1.8(4)*
C13	-0.254(2)	0.291(1)	0.6409(8)	2.2(4)*
C14	0.088(2)	-0.099(1)	0.5685(9)	3.3(5)*
C15	-0.088(2)	0.374(1)	0.6120(8)	2.5(4)*
C16	0.199(2)	0.023(1)	0.5501(8)	2.3(4)*
C17	-0.161(2)	0.271(1)	0.5482(8)	2.4(4)*

^aStarred items = atoms refined isotropically.

TABLE 3. Bond distances (Å)^a

Atom 1	Atom 2	Distance	Atom 1	Atom 2	Distance	Atom 1	Atom 2	Distance
Complex	A							
I1	Cu3	2.976(2)	Cu1	O2	1.954(6)	N4	C12	1.424(11)
I1	Cu4	2.552(1)	Cu1	N2	1.913(7)	N4	C13	1.398(12)
I1	Cu5	2.797(2)	Cu1	N3	2.022(7)	N5	C18	1.097(12)
12	Cu4	2.540(1)	Cu2	01	1.896(7)	C1	C2	1.488(13)
12	Cu5	2.507(2)	Cu2	O2	1.988(6)	C2	C3	1.374(13)
I3	Cu3	2.756(2)	Cu2	N1	1.912(8)	C2	C7	1.376(13)
13	Cu4	2.553(1)	Cu2	N4	1.992(7)	C3	C4	1.376(13)
13	Cu5	2.899(2)	Cu2	N5	2.490(9)	C4	C5	1.379(13)
I4	Cu3	2.629(1)	O2	C5	1.301(11)	C4	C9	1.428(13)
I4	Cu5	2.598(2)	N1	C8	1.287(11)	C5	C6	1.456(13)
I5	Cu1	3.095(1)	N1	C10	1.424(12)	C6	C7	1.382(13)
I5	Cu3	2.525(1)	N2	С9	1.270(12)	C6	C8	1.420(13)
Cu1	Cu2	2.980(2)	N2	C14	1.424(12)	C10	C11	1.408(13)
Cu3	Cu4	2.780(2)	N3	C15	1.500(11)	C14	C15	1.350(13)
Cu3	Cu5	2.506(2)	N3	C16	1.455(12)	C18	C19	1.522(14)
Cu4	Cu5	2.652(2)	N3	C17	1.401(12)			
Cul	01	1.915(7)	N4	C11	1.434(12)			
Complex I	B							
Br1	Cu1	2.418(3)	0	C1	1.31(2)	C2	C3	1.37(2)
Br2	Cu2	2.677(3)	N1	С9	1.25(2)	C2	C8	1.47(2)
Br3	Cu1	2.889(3)	N1	C11	1.45(2)	C3	C4	1.38(2)
Br3	Cu2	2.416(3)	N2	C8	1.27(2)	C4	C5	1.34(2)
Cu1	0	1.956(10)	N2	C10	1.44(2)	C4	C7	1.52(2)
Cu1	N1	1.988(13)	N3	C13	1.51(2)	C5	C6	1.41(2)
Cu1	N3	2.035(14)	N3	C15	1.49(2)	C6	C9	1.46(2)
Cu2	0	1.988(10)	N3	C17	1.49(2)	C10	C12	1.48(2)
Cu2	N2	1.968(13)	N4	C12	1.47(2)	C11	C13	1.51(3)
Cu2	N4	2.066(13)	N4	C14	1.52(2)	C1	C2	1.45(2)
			N4	C16	1.48(2)	C1	C6	1.44(2)

^a Numbers in parentheses are e.s.d.s in the least significant digits.

TABLE 4. Bond angles (°)

Complex A Cu3 II Cu4 S9.81(4) IS Cu4 Cu3 Fill Cu2 NS 94.3(3) Cu4 II Cu5 59.24(4) Cu3 Cu4 Cu5 67.67(5) N4 Cu2 NS 97.1(3) Cu4 II Cu5 59.24(4) Cu3 Cu4 Cu5 54.87(5) CIS NI CII 123.318 Cu4 63.04(5) II Cu5 13 104.91(5) CIS N3 CI7 108.87(7) Cu3 I3 Cu5 57.29(4) II Cu5 Cu3 68.01(6) CI6 N3 CI7 108.87(7) Cu3 I3 Cu5 77.29(4) CI1 N4 CI2 CI 107.57(7) Cu3 I3 103.95(5) I2 Cu5 Cu3 171.15(6) CI C2 C7 131.08 II Cu3 I3 103.95(5) I3 Cu5 G4 15	Atom 1	Atom 2	Atom 3	Angle	Atom 1	Atom 2	Atom 3	Angle	Atom 1	Atom 2	Atom 3	Angle
Ch3 II Cu4 59.81(4) 13 Cu4 Cu3 62.05(5) N1 Cu2 N5 94.3(3) Cu4 II Cu5 59.24(4) Cu3 Cu4 Cu5 67.67(5) N4 Cu2 N5 97.1(3) Cu4 II Cu5 59.24(4) Cu3 Cu4 Cu5 54.87(5) C8 N1 C10 123.48(8) Cu3 II3 Cu4 63.04(5) II Cu5 14 99.55(5) C15 N3 C16 111.2(2) Cu4 II3 Cu5 57.80(4) II Cu5 Cu5 68.01(6) C16 N3 C17 114.9(7) Cu1 II3 Cu3 57.80(4) II Cu5 Cu4 120.19(6) C11 N4 C13 110.0(7) II Cu3 II3 103.9(5) II Cu5 14 120.19(6) C12 N4 C13 110.0(7) II Cu3 II3 Cu4 53.71(4) C12 C12 C12 C12 C17 121.4(8	Complex	Α										
Ch3 11 Cu5 51,34(4) 13 Cu4 Cu5 54,87(5) C8 N1 C10 123,3(8) Cu4 12 Cu5 56,87(5) C8 N1 C10 123,3(8) Cu3 13 Cu4 66,84(5) 11 Cu5 12 117,65(7) C9 N2 C14 124,44(5) Cu3 13 Cu4 53,730(4) 11 Cu5 G4 13 104,91(5) C15 N3 C14 C13 111,2(7) Cu3 14 Cu5 57,730(4) 11 Cu5 G4 153,71(6) C11 N4 C13 100,8(7) Cu1 Cu2 107,33(4) 12 Cu5 G4 112,0(3) C11 N4 C13 100,8(7) 11 Cu3 13 103,93(5) 12 Cu5 G4 112,0(3) C12 C4 C13 100,8(7) 11 Cu3 14 103,3(3) 12 Cu3	Cu3	I1	Cu4	59.81(4)	13	Cu4	Cu3	62.05(5)	N1	Cu2	N5	94.3(3)
Cu4 II Cu5 S9.24(4) Cu3 Cu4 Cu5 S4.87(5) C8 N1 C10 123.3(8) Cu3 I3 Cu4 63.04(5) II Cu5 I3 104.91(5) C15 N3 C16 111.2(7) Cu3 I3 Cu4 63.04(5) II Cu5 IA 99.5(5) C15 N3 C17 108.8(7) Cu4 I3 Cu3 S7.36(4) II Cu5 Cu3 C11 N4 C12 112.1(7) Cu1 Cu2 Cu3 S7.36(4) II Cu5 Cu3 T2.1(50) C1 C2 C3 125.4(10) II Cu3 I3 03.95(5) I2 Cu5 Cu3 112.1(50) C1 C2 C3 125.4(10) 13 Cu3 60.55(6) C3 C2 C7 121.4(9) 11 Cu3 Cu3 60.75(5) C3 C4 C5 C3 C2 C7 C3	Cu3	I1	Cu5	51.34(4)	I3	Cu4	Cu5	67.67(5)	N4	Cu2	N5	97.1(3)
Cu4 12 Cu5 86.52(5) 11 Cu5 12 117.65(7) C9 N2 C14 13 Cu4 13 Cu4 13 Cu4 13 Cu5 S7.36(4) 11 Cu5 13 104.9(15) C15 N3 C17 114.9(7) Cu4 13 Cu5 S7.36(4) 11 Cu5 Cu3 68.01(6) C16 N3 C17 114.9(7) Cu4 15 Cu3 13.08(5) 12 Cu5 13 111.59(6) C11 N4 C12 110.0(7) 15 Cu1 Cu2 Cu3 13 103.35(5) 12 Cu5 Cu4 112.73(6) C1 C2 C7 113.1(8) 11 Cu3 15 112.65(6) 13 Cu5 Cu4 51.66(5) C3 C4 C9 119.3(8) 16 Cu3 C14 61.65(5) C2 C3 C14.66(8) C5 C4 C9 112.14(8)	Cu4	I1	Cu5	59.24(4)	Cu3	Cu4	Cu5	54.87(5)	C8	N1	C10	123.3(8)
Cu3 13 Cu4 63.04(5) 11 Cu5 13 104.91(5) Cl5 N3 Cl6 111.2(7) Cu3 13 Cu5 57.80(4) 11 Cu5 Cu3 68.01(6) Cl6 N3 Cl7 118.98(7) Cu3 14 Cu5 57.80(4) 11 Cu5 Cu3 68.01(6) Cl6 N3 Cl7 118.98(7) Cu3 14 Cu3 57.80(4) 12 Cu5 Cu3 17.21(50) Cl C2 Cl 110.07) 11 Cu3 15 112.65(6) 12 Cu5 Cu3 17.21(50) Cl C2 C7 121.4(9) 11 Cu3 Cu4 52.51(4) 13 Cu5 Cu3 60.55(6) C3 C2 C7 113.4(8) 11 Cu3 Cu4 52.51(4) 13 Cu5 Cu4 54.53(4) C3 C4 C2 C13 C4 C4 C9 119.7(9) <td>Cu4</td> <td>I2</td> <td>Cu5</td> <td>86.82(5)</td> <td>I1</td> <td>Cu5</td> <td>12</td> <td>117.65(7)</td> <td>С9</td> <td>N2</td> <td>C14</td> <td>124.4(8)</td>	Cu4	I2	Cu5	86.82(5)	I1	Cu5	12	117.65(7)	С9	N2	C14	124.4(8)
Cu3 I3 Cu5 52,53(4) I1 Cu5 I4 99,55(5) Cl5 N3 Cl7 114,9(7) Cu3 I4 Cu5 57,36(4) I1 Cu5 Cu3 68,01(6) Cl6 N3 Cl1 N4 Cl2 112,1(7) Cu1 I5 Cu3 133 113,96(5) I2 Cu5 Cu3 172,15(9) Cl C2 C3 125,4(8) I1 Cu3 I4 94,48(5) I2 Cu5 Cu3 172,15(9) Cl C2 C7 113,1(8) I1 Cu3 Cu4 S2,51(4) I3 Cu5 Cu4 54,51(3) C3 C4 C9 121,4(8) I1 Cu3 Cu4 S0,51(3) Cu5 Cu4 51,6(5) C3 C14 C51,6(3) C4 C5 119,3(8) I1 Cu3 S0,127,8(6) C1 Cu1 C3 C4 C5 C6 122,4(8) I1	Cu3	13	Cu4	63.04(5)	I1	Cu5	13	104.91(5)	C15	N3	C16	111.2(7)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Cu3	13	Cu5	52.53(4)	I 1	Cu5	I4	99.55(5)	C15	N3	C17	114.9(7)
Cu3 14 Cu5 57.29(4) 11 Cu5 Cu4 55.77(4) Cl1 N4 Cl2 112.1(5) IS Cu3 IO IO II Cu5 II 11.59(6) Cl1 N4 Cl3 IIO.0(7) II Cu3 IA IO.395(5) I2 Cu5 Cu3 I72.15(9) Cl C2 C3 IZ5.4(8) II Cu3 IA IA.48(6) I3 Cu5 Cu4 IO.35(6) C2 C3 C2 C3 C4 IZ5.4(4) II Cu3 Cu4 56.5(6) I3 Cu5 Cu4 54.3(4) C3 C4 C5 C4 126.9(6) C3 C4 C5 C4 121.0(7) 113.1(3) 100.35(5) 12 Cu1 N2 167.3(3) C4 C5 C4 122.8(9) 13 Cu3 Cu4 45.16(5) 02 C5 C4 122.8(8) 13 122.8(6) 10 11.11.16(0) 14 Cu3 122.8(6) 122.8(6) 122.8(6) 122.8(7) 122.8(7) <	Cu4	13	Cu5	57.80(4)	I1	Cu5	Cu3	68.01(6)	C16	N3	C17	108.8(7)
	Cu3	I4	Cu5	57.29(4)	I1	Cu5	Cu4	55.77(4)	C11	N4	C12	112.1(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Cu1	I5	Cu3	113.08(5)	12	Cu5	13	111.59(6)	C11	N4	C13	110.0(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15	Cu1	Cu2	107.33(4)	12	Cu5	I4	120.19(6)	C12	N4	C13	107.5(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11	Cu3	13	103.95(5)	12	Cu5	Cu3	172.15(9)	C1	C2	C3	125.4(8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11	Cu3	14	94.48(5)	12	Cu5	Cu4	112.73(6)	Cl	C2	C7	121.4(9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11	Cu3	15	112.65(6)	13	Cu5	14	100.55(6)	C3	C2	C7	113.1(8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11	Cu3	Cu4	52.51(4)	13	Cus	Cu3	60.79(5)	C2	C3	C4	126.4(8)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	11	Cu3	Cus	60.65(6)	13	Cus	Cu4 Cu2	54.53(4)	C3	C4	c_{3}	119./(9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13	Cu3	14	103.63(3)	14 14	Cus	Cu3	01.90(3)	C3	C4	C9	119.5(8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13	Cu3	15 Cu4	54.01(4)	14 C2	Cus	Cu4 Cu4	120.98(0)	01	C4 C5	C9	121.0(0) 122.8(0)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	13	Cu3	Cu4 Cu5	54.91(4)		Cus	01	70.2(3)	0^2	C5	C4 C6	122.0(9)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	13	Cu3	15	127 83(6)	01	Cul	N2	167 3(3)	C4	C5	C6	120.4(8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14	Cu3	15 Cu4	120.58(6)	01	Cul	N3	107.3(3)	C5	C5 C6	C7	118 3(8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14	Cu3	Cu5	60.75(5)	02	Cul	N2	91.8(3)	C5	C6	C8	121 4(8)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	15	Cu3	Cu4	111 16(6)	$\frac{02}{02}$	Cul	N3	164 9(3)	C7	C6	C8	120.3(8)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	15	Cu3	Cu5	170.79(8)	N2	Cu1	N3	84.9(3)	C2	C7	C6	125.5(9)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Cu4	Cu3	Cu5	59.97(5)	01	Cu2	02	78.8(3)	N1	C8	C6	129.9(8)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	П	Cu4	12	120.96(5)	01	Cu2	N1	165.4(3)	N2	C9	C4	131.3(9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	I1	Cu4	13	124,47(6)	01	Cu2	N4	103.7(3)	N1	C10	C11	109.1(8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	I1	Cu4	Cu3	67.68(5)	01	Cu2	N5	95.3(3)	N4	C11	C10	113.7(8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	II	Cu4	Cu5	64.98(5)	02	Cu2	N1	90.7(3)	N2	C14	C15	112.0(8)
12 Cu4 Cu3 144.14(6) O2 Cu2 N5 87.1(3) N5 C18 C19 178(1) 12 Cu4 Cu5 160.41(7) N1 Cu2 N4 86.0(3) Cu2 N5 C18 C19 178(1) 12 Cu4 Cu5 160.41(7) N1 Cu2 N4 86.0(3) Cu2 N5 C18 130.1(8) Complex B Br1 Cu1 Br3 90.77(9) N4 C12 C10 111(1) Br1 Cu1 O 92.1(3) N3 C13 C11 120(2) Br1 Cu1 N1 152.0(4) C9 N1 C11 120(2) Br3 Cu1 N1 116.4(4) C13 N3 C15 112(1) Br3 Cu1 N1 188.8(5) C12 N4 C14 109(1) O Cu1 N3 85.4(6) C14 N4 C16 113(1) N1 Cu1 N3 85.4(6) C14 N4 </td <td>12</td> <td>Cu4</td> <td>I3</td> <td>113.46(5)</td> <td>02</td> <td>Cu2</td> <td>N4</td> <td>174.9(3)</td> <td>N3</td> <td>C15</td> <td>C14</td> <td>114.2(8)</td>	12	Cu4	I3	113.46(5)	02	Cu2	N4	174.9(3)	N3	C15	C14	114.2(8)
I2 Cu4 Cu5 160.41(7) N1 Cu2 N4 86.0(3) Cu2 N5 C18 130.1(8) Complex B Br1 Cu1 Br3 90.77(9) N4 C12 C10 111(1) Br1 Cu1 O 92.1(3) N3 C13 C11 110(2) Br1 Cu1 N1 152.0(4) C9 N1 C11 120(2) Br1 Cu1 N3 97.0(4) C8 N2 C10 122(1) Br3 Cu1 O 75.6(3) C13 N3 C15 112(1) Br3 Cu1 N1 116.4(4) C13 N3 C17 108(1) O Cu1 N3 99.5(4) C15 N3 C17 108(1) O Cu1 N3 89.4(6) C12 N4 C16 113(1) N1 Eds S5 C12 N4 C16 113(1) N1 Cu1 N3 85.4(6) C14 N4 C16 113(1)	I2	Cu4	Cu3	144.14(6)	02	Cu2	N5	87.1(3)	N5	C18	C19	178(1)
Complex B Br1 Cu1 Br3 90.77(9) N4 C12 C10 111(1) Br1 Cu1 O 92.1(3) N3 C13 C11 110(2) Br1 Cu1 N1 152.0(4) C9 N1 C11 120(2) Br1 Cu1 N3 97.0(4) C8 N2 C10 122(1) Br3 Cu1 O 75.6(3) C13 N3 C15 112(1) Br3 Cu1 N1 116.4(4) C13 N3 C17 108(1) O Cu1 N1 88.8(5) C12 N4 C16 113(1) N1 Cu1 N3 85.4(6) C14 N4 C16 109(1) O Cu1 N3 85.4(6) C14 N4 C16 109(1) Br2 Cu2 Br3 101.35(9) O C1 C2 122(2) Br2 Cu2 N2 90.3(4) C2 C1 C6 115(2) Br3 Cu2	12	Cu4	Cu5	160.41(7)	N1	Cu2	N4	86.0(3)	Cu2	N5	C18	130.1(8)
Br1 Cu1 Br3 90.77(9) N4 C12 C10 111(1) Br1 Cu1 O 92.1(3) N3 C13 C11 110(2) Br1 Cu1 N1 152.0(4) C9 N1 C11 120(2) Br1 Cu1 N3 97.0(4) C8 N2 C10 122(1) Br3 Cu1 O 75.6(3) C13 N3 C15 112(1) Br3 Cu1 N1 116.4(4) C13 N3 C17 108(1) O Cu1 N1 88.8(5) C12 N4 C16 113(1) Br3 Cu1 N3 85.4(6) C14 N4 C16 109(1) O Cu1 N3 85.4(6) C14 N4 C16 109(1) Br2 Cu2 Br3 101.35(9) O C1 C2 122(2) Br2 Cu2 N4 96.3(4) C1 C2 C3 120(2) Br3 Cu2 N4 96.3(4) C1 <td>Complex</td> <td>В</td> <td></td>	Complex	В										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Br1	Cu1	Br3	90.77(9)	N4	C12	C10	111(1)				
Br1Cu1N1 $152.0(4)$ C9N1C11 $120(2)$ Br1Cu1N397.0(4)C8N2C10 $122(1)$ Br3Cu1O75.6(3)C13N3C15 $112(1)$ Br3Cu1N1116.4(4)C13N3C17 $108(1)$ OCu1N188.8(5)C12N4C14 $109(1)$ OCu1N188.8(5)C12N4C16 $113(1)$ N1Cu1N385.4(6)C14N4C16 $109(1)$ OCu1N385.4(6)C14N4C16 $109(1)$ Br2Cu2Br3101.35(9)OC1C2 $122(2)$ Br2Cu2N290.3(4)C2C1C6 $115(2)$ Br2Cu2N496.3(4)C1C2C3 $120(2)$ Br3Cu2N2167.9(4)C3C2C8 $120(2)$ Br3Cu2N2167.9(4)C3C2C8 $120(2)$ Br3Cu2N497.5(4)C2C3C4 $124(2)$ OCu2N497.5(4)C2C3C4 $124(2)$ OCu2N497.5(4)C2C3C4 $124(2)$	BrI	Cul	0	92.1(3)	N3	C13	C11	110(2)				
Br1Cu1N397.0(4)C8N2C10122(1)Br3Cu1O75.6(3)C13N3C15112(1)Br3Cu1N1116.4(4)C13N3C17108(1)Br3Cu1N1116.4(4)C15N3C17108(1)OCu1N188.8(5)C12N4C14109(1)OCu1N3169.8(5)C12N4C16113(1)N1Cu1N385.4(6)C14N4C16109(1)Br2Cu2Br3101.35(9)OC1C2122(2)Br2Cu2O102.8(3)OC1C6115(2)Br2Cu2N496.3(4)C1C2C3120(2)Br3Cu2N2167.9(4)C3C2C8120(2)Br3Cu2N497.5(4)C2C3C4124(2)OCu2N497.5(4)C3C4124(2)OCu2N497.5(4)C2C3C4124(2)	Br1	Cul	N1	152.0(4)	C9	N1	C11	120(2)				
DriCuiNoPris(r)CuNiPris(r)CuNiBr3Cui075.6(3)Cl3N3Cl5112(1)Br3CuiN1116.4(4)Cl3N3Cl7108(1)Br3CuiN399.5(4)Cl5N3Cl7108(1)OCuiN188.8(5)Cl2N4Cl4109(1)OCuiN3169.8(5)Cl2N4Cl6113(1)N1CuiN385.4(6)Cl4N4Cl6109(1)Br2Cu2Br3101.35(9)OClC2122(2)Br2Cu2O102.8(3)OClC6112(2)Br2Cu2N290.3(4)C2ClC6115(2)Br2Cu2N496.3(4)ClC2C3120(2)Br3Cu2N2167.9(4)C3C2C8120(2)Br3Cu2N497.5(4)C2C3C4124(2)OCu2N286.8(5)C3C4C5117(2)	Br1	Cu1	N3	97 0(4)	C8	N2	C10	122(1)				
Br3Cu1N1116.4(4)C13N3C17108(1)Br3CuIN399.5(4)C15N3C17108(1)OCu1N188.8(5)C12N4C14109(1)OCu1N3169.8(5)C12N4C16113(1)N1Cu1N385.4(6)C14N4C16109(1)Br2Cu2Br3101.35(9)OC1C2122(2)Br2Cu2O102.8(3)OC1C6115(2)Br2Cu2N290.3(4)C2C1C6115(2)Br2Cu2N496.3(4)C1C2C3120(2)Br3Cu2O87.5(3)C1C2C8120(2)Br3Cu2N2167.9(4)C3C2C8120(2)Br3Cu2N497.5(4)C2C3C4124(2)OCu2N286.8(5)C3C4C5117(2)	Br3	Cu1	0	75 6(3)	C13	N3	C15	122(1) 112(1)				
Br3CuIN399.5(4)C15N3C17108(1)OCuINI88.8(5)C12N4C14109(1)OCuIN3169.8(5)C12N4C16113(1)N1CuIN385.4(6)C14N4C16109(1)Br2Cu2Br3101.35(9)OC1C2122(2)Br2Cu2O102.8(3)OC1C6123(2)Br2Cu2N290.3(4)C2C1C6115(2)Br2Cu2N496.3(4)C1C2C3120(2)Br3Cu2O87.5(3)C1C2C8120(2)Br3Cu2N2167.9(4)C3C2C8120(2)Br3Cu2N497.5(4)C2C3C4124(2)OCu2N286.8(5)C3C4C5117(2)	Br3	Cu1	N1	116.4(4)	C13	N3	C17	108(1)				
Br3Cu1N399.5(4)C15N3C17108(1)OCu1N1 $88.8(5)$ C12N4C14109(1)OCu1N3169.8(5)C12N4C16113(1)N1Cu1N3 $85.4(6)$ C14N4C16109(1)Br2Cu2Br3101.35(9)OC1C2122(2)Br2Cu2O102.8(3)OC1C6123(2)Br2Cu2N290.3(4)C2C1C6115(2)Br2Cu2N496.3(4)C1C2C3120(2)Br3Cu2O87.5(3)C1C2C8120(2)Br3Cu2N497.5(4)C2C3C4124(2)OCu2N286.8(5)C3C4C5117(2)	D 0	0.1	202	00.5(4)	010	210	017					
O Cu1 N1 $88.8(3)$ C12 N4 C14 $109(1)$ O Cu1 N3 $169.8(5)$ C12 N4 C16 $113(1)$ N1 Cu1 N3 $85.4(6)$ C14 N4 C16 $109(1)$ Br2 Cu2 Br3 $101.35(9)$ O C1 C2 $122(2)$ Br2 Cu2 O $102.8(3)$ O C1 C6 $123(2)$ Br2 Cu2 N2 $90.3(4)$ C2 C1 C6 $115(2)$ Br2 Cu2 N4 $96.3(4)$ C1 C2 C3 $120(2)$ Br3 Cu2 O $87.5(3)$ C1 C2 C8 $120(2)$ Br3 Cu2 N4 $97.5(4)$ C2 C3 C4 $124(2)$ O Cu2 N2 $86.8(5)$ C3 C4 C5 $117(2)$	BLZ	Cul	N3	99.5(4)	CIS	N3	C17	108(1)				
O Cu1 N3 109.3(3) C12 N4 C16 115(1) N1 Cu1 N3 $85.4(6)$ C14 N4 C16 109(1) Br2 Cu2 Br3 101.35(9) O C1 C2 122(2) Br2 Cu2 O 102.8(3) O C1 C6 123(2) Br2 Cu2 N2 90.3(4) C2 C1 C6 115(2) Br2 Cu2 N4 96.3(4) C1 C2 C3 120(2) Br3 Cu2 O 87.5(3) C1 C2 C8 120(2) Br3 Cu2 N2 167.9(4) C3 C2 C8 120(2) Br3 Cu2 N4 97.5(4) C2 C3 C4 124(2) O Cu2 N2 86.8(5) C3 C4 C5 117(2)	0	Cul	N1 N3	00.0(3) 160.8(5)	C12 C12	N4 N4	C14 C16	109(1) 112(1)				
N1Cu1N3 $85.4(6)$ C14N4C16 $109(1)$ Br2Cu2Br3 $101.35(9)$ OC1C2 $122(2)$ Br2Cu2O $102.8(3)$ OC1C6 $123(2)$ Br2Cu2N2 $90.3(4)$ C2C1C6 $115(2)$ Br2Cu2N4 $96.3(4)$ C1C2C3 $120(2)$ Br3Cu2O $87.5(3)$ C1C2C8 $120(2)$ Br3Cu2N2 $167.9(4)$ C3C2C8 $120(2)$ Br3Cu2N4 $97.5(4)$ C2C3C4 $124(2)$ OCu2N2 $86.8(5)$ C3C4C5 $117(2)$	0	Cui	NJ	109.8(3)	012	114	010	113(1)				
Br2Cu2Br3 $101.35(9)$ OC1C2 $122(2)$ Br2Cu2O $102.8(3)$ OC1C6 $123(2)$ Br2Cu2N2 $90.3(4)$ C2C1C6 $115(2)$ Br2Cu2N4 $96.3(4)$ C1C2C3 $120(2)$ Br3Cu2O $87.5(3)$ C1C2C8 $120(2)$ Br3Cu2N2 $167.9(4)$ C3C2C8 $120(2)$ Br3Cu2N4 $97.5(4)$ C2C3C4 $124(2)$ OCu2N2 $86.8(5)$ C3C4C5 $117(2)$	N1	Cu1	N3	85.4(6)	C14	N4	C16	109(1)				
Br2 Cu2 O $102.8(3)$ O C1 C6 $123(2)$ Br2 Cu2 N2 $90.3(4)$ C2 C1 C6 $115(2)$ Br2 Cu2 N4 $96.3(4)$ C1 C2 C3 $120(2)$ Br3 Cu2 O $87.5(3)$ C1 C2 C8 $120(2)$ Br3 Cu2 N2 $167.9(4)$ C3 C2 C8 $120(2)$ Br3 Cu2 N4 $97.5(4)$ C2 C3 C4 $124(2)$ O Cu2 N2 $86.8(5)$ C3 C4 C5 $117(2)$	Br2	Cu2	Br3	101.35(9)	0	C1	C2	122(2)				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Br2	Cu2	0	102.8(3)	0	CI	C6	123(2)				
Br2Cu2N496.3(4)C1C2C3120(2)Br3Cu2O $87.5(3)$ CIC2C8120(2)Br3Cu2N2167.9(4)C3C2C8120(2)Br3Cu2N497.5(4)C2C3C4124(2)OCu2N286.8(5)C3C4C5117(2)	Br2	Cu2	N2	90.3(4)	C2	CI	C6	115(2)				
Br3 Cu2 O 87.5(3) CI C2 C8 120(2) Br3 Cu2 N2 167.9(4) C3 C2 C8 120(2) Br3 Cu2 N4 97.5(4) C2 C3 C4 124(2) O Cu2 N2 86.8(5) C3 C4 C5 117(2)	Br2	Cu2	N4	96.3(4)	C1	C2	C3	120(2)				
Br3 Cu2 N2 167.9(4) C3 C2 C8 120(2) Br3 Cu2 N4 97.5(4) C2 C3 C4 124(2) O Cu2 N2 86.8(5) C3 C4 C5 117(2)	Br3	Cu2	0	87.5(3)	CI	C2	C8	120(2)				
Br3 Cu2 N4 97.5(4) C2 C3 C4 124(2) O Cu2 N2 86.8(5) C3 C4 C5 117(2)	Br3	Cu2	N2	167.9(4)	C3	C2	C8	120(2)				
$O = Cu^2 = N^2 = 86.8(5) = C^3 = C^4 = C^5 = 117(2)$	Br3	Cu2	N4	97.5(4)	C2	C3	C4	124(2)				
	0	Cu2	N2	86.8(5)	C3	C4	C5	117(2)				

(continued)

Atom 1	Atom 2	Atom 3	Angle	Atom 1	Atom 2	Atom 3	Angle	Atom 1	Atom 2	Atom 3	Angle
Complex	B										
0	Cu2	N4	158.9(5)	C3	C4	C7	122(2)				
N2	Cu2	N4	84.2(5)	C5	C4	C7	121(2)				
N2	C8	C2	126(2)	C4	C5	C6	123(2)				
N1	С9	C6	127(2)	C1	C6	C5	120(2)				
N2	C10	C12	109(1)	C1	C6	С9	120(2)				
N1	C11	C13	109(2)	C5	C6	С9	120(2)				

Numbers in parentheses are e.s.d.s in the least significant digits.

(c)

Fig. 1. ORTEP diagrams of: (a) the binuclear $(Cu_2L(\mu-OH)]^{2+}$ unit; (b) the $(Cu_6I_{10})^{4-}$ cluster; (c) the asymmetric unit of the $[Cu_2L(\mu-OH)]_2(Cu_6I_{10})$ crystalline material.

Fig. 2. ORTEP diagram of the binuclear $[Cu_2L(\mu-Br)]^{2+}$ unit of the $[Cu_2L(\mu-Br)]Br_2$ crystalline material.

on a crystallographic inversion center and bridges between two binuclear units. The axial ligands lie on opposite sides of the plane of the Fsal ligand. Cu1 lies 0.213(4) Å above the plane defined by O1, O2, N2 and N3, while Cu2 lies 0.124(4) Å above the plane defined by O1, O2, N1 and N4. The bridging angles between the ligands and the two copper(II) centers are $102.9(3)^{\circ}$ for Cu1-O1-Cu2 and $98.2(3)^{\circ}$ for Cu1-O2-Cu2.

The $[Cu_6I_{10}]^{4-}$ ion consists of two triangular clusters of Cu(I) atoms which are linked by bridging I atoms (I2 and I4) and capped by two I atoms (I1 and I3). The geometry of I atoms about Cu3 and Cu5 is tetrahedral while the geometry at Cu4 is approximately trigonal. There are several other reports of copper(I) iodide clusters, including $[Cu_2I_4]^{2-}$ [23], $[Cu_2I_6]^{4-}$ [23], $[Cu_3I_4]^-$ [24], $[Cu_4I_6]^{2-}$ [25], $[CuI_3]^{2-}$ [26] and $[Cu_{36}I_{56}]^{20-}$ [27].

In complex **B**, a Br^- ion occupies the bridging position. Each Cu atom is again five coordinate with approximate square-pyramidal coordination geometry. Unlike complex **A**, however, in complex **B**, the bridging ion occupies the axial coordination site of the square pyramid at Cu1. At Cu2, the bridging ligand forms part of the base of the pyramid, as in complex **A**. This unusual coordination geometry is also reflected in the asymmetry of the bonds to the bridging ligand, with lengths of 2.889(3) and 2.416-(3) Å for Cu1-Br3 and Cu2-Br3, respectively. The bridging angles between the oxygen and bromine ligands and the two copper(II) centers are 110.9(3)° for Cu1–O–Cu2 and 74.9(1)° for Cu1–Br3–Cu2. A similar, although smaller, asymmetry is observed in the corresponding complex of 2,6-bis(N-2-pyridyl-formidolyl)-4-methylphenol with Br⁻ in the bridging and axial positions [2]. Cu1 lies 0.206(2) Å above the least-squares plane through Br1, O, N1 and N3, while Cu2 lies 0.284(2) Å above the plane of Br3, O, N2 and N4.

Magnetism

The magnetic susceptibility data for the complexes is plotted as a function of temperature in Figs. 3 and 4. Each of the data curves exhibits magnetic susceptibility behavior that is consistent with antiferromagnetic coupling between the two copper(II) ions in the binuclear unit; $[Cu_2 L(\mu-Br)]Br_2$ has a maximum around 60 K and $[Cu_2 L(\mu-OH)(CH_3CN)]_2[Cu_6 I_{10}]$ has its maximum above room temperature. The

Fig. 3. Plot of the magnetic susceptibility as a function of temperature for $[Cu_2L(\mu-OH)](Cu_6I_{10})_{0.5}$. The smooth curve plotted through the data points is the best fit of eqn. (1) to the data as described in text.

Fig. 4. Plot of the magnetic susceptibility as a function of temperature for $[Cu_2L(\mu-Br)]Br_2$. The smooth curve plotted through the data points is the best fit of eqn. (1) to the data as described in text.

Complex	g	J (cm ⁻¹)	<i>TIP</i> (emu/mol Cu)	Impurity (%)
[Cu ₂ L(μ-Br)]Br ₂	2.07	-157	0.000082	1.5
[Cu ₂ L(μ-OH)(CH ₃ CN)] ₂ [Cu ₆ I ₁₀]	2.05	-478	0.000075	

TABLE 5. Fitted magnetic parameters for the two copper(II) binuclears as described in text

iodide complex exhibited signs of decomposition when the specimen was heated above approximately 300 K, and therefore attempts to resolve the maximum expected at higher temperatures were unsuccessful. The decomposition of the sample above 300 K was checked by re-cooling the heated sample back to 6 K. A plot of the magnetic data as a function of temperature for this thermally recycled sample showed pronounced differences in shape and magnitude, and verified the decomposition of the sample at elevated temperatures.

The type of non-Curie-Weiss behavior that is observed in these two compounds is consistent with antiferromagnetic coupling between the two copper-(II) ions $(S_1 = S_2 = 1/2)$ of the binuclear unit. The equation that describes the temperature dependence of the magnetic susceptibility of a copper(II) binuclear is given in eqn. (1).

$$\chi = \frac{2Ng^2\mu_{\rm B}^2}{kT} \frac{\exp^x}{1-3\exp^x}$$
(1)

where x = 2J/kT, and 2J is the singlet triplet splitting with a negative J value denoting a ground state singlet. The data were also corrected for the presence of temperature independent paramagnetism before fitting with this equation. Complex A (the hydroxide bridged complex) also required a small correction for the presence of a paramagnetic (monomeric) impurity. Both complexes gave excellent fits of eqn. (1) to the experimental data using the parameters listed in Table 5.

The hydroxide bridged complex exhibits a much larger exchange constant compared to the bromine bridged complex. This is as expected from our previous studies comparing hydroxide and bromide bridges. It is interesting to note that the bromine bridged pathway is longer than might be expected due to the axial type bond of Br3 to Cu1. This distance is close to a non-bonding distance and might be expected to have a negligible contribution to the magnetic exchange when compared to the phenoxide bridge. In the hydroxide bridged complex, on the other hand, both the hydroxide and the phenoxide bridges would be expected to contribute to the overall magnetic exchange.

The results that we have obtained on these materials are consistent with our previous observa-

tions of the magnetic properties of binuclear copper-(II) molecules with exogenous bridging ligands. The effectiveness of the exogenous ligands may be ordered according to their ability to propagate antiferromagnetic exchange. Since the phenoxide bridge by itself would be expected to propagate a moderate antiferromagnetic exchange component, the smaller values of magnetic coupling constants that we have observed in some of these complexes are likely due to a ferromagnetic exchange influence. The ordering of the ligands from strong antiferromagnetic to weak ferromagnetic coupling is as follows: 1,3-N₃⁻, OH⁻, Br⁻, Cl⁻, CH₃CO₂⁻, 1,1-N₃⁻. All of the data have been recorded on copper(II) binuclear complexes. It is planned to extend this study to binuclear metal complexes other than copper in order to test the efficiency of these ligands for the propagation of magnetic exchange when coupled to metals with higher spin states.

Acknowledgements

C.J.O. wishes to acknowledge support from the Louisiana Education Quality Support Fund administered by the Board of Regents of the state of Louisiana and the donors of the Petroleum Research Fund administered by the Americal Chemical Society.

References

- 1 E. E. Eduok and C. J. O'Connor, Inorg. Chim. Acta, 88 (1984) 229.
- 2 C. J. O'Connor, D. A. Frmin, A. K. Pant, B. Ram Babu and E. D. Stevens, *Inorg. Chem.*, 25 (1986) 2300.
- 3 T. N. Sorrell, D. L. Jameson and C. J. O'Connor, *Inorg. Chem.*, 23 (1984) 190.
- 4 M. L. Boillot, O. Kahn, C. J. O'Connor, J. Gouteron, S. Jeannin and Y. Jeannin, J. Chem. Soc., Chem. Commun., (1985) 178.
- 5 T. Mallah, M. L. Boillot, O. Kahn, J. Gouteron, S. Jeannin and Y. Jeannin, *Inorg. Chem.*, 25 (1986) 3058.
- 6 T. Mallah, O. Kahn, J. Gouteron, S. Jeannin, Y. Jeannin and C. J. O'Connor, *Inorg. Chem.*, 26 (1987) 1375.
- 7 O. Kahn, T. Mallah, J. Gouteron, S. Jeannin and Y. Jeannin, J. Chem. Soc., Dalton Trans., in press.
- 8 T. N. Sorrell, C. J. O'Connor, O. P. Anderson and J. H. Reibenspies, J. Am. Chem. Soc., 107 (1985) 4199.
- 9 V. McKee, M. Zvagulis, J. V. Dadgegian, M. G. Patch and C. A. Reed, J. Am. Chem. Soc., 106 (1984) 4765.

- 10 J. Lorosch, W. Haase and P. V. Huong, J. Inorg. Biochem., 27 (1986) 53.
- 11 W. P. J. Gaykema, W. G. J. Hol, J. M. Vereijken, N. M. Soeter, H. J. Bak and J. J. Beintema, *Nature (London)*, 309 (1984) 23.
- 12 E. I. Solomon, in T. G. Spiro (ed.), Copper Proteins, Wiley, New York, 1981, Ch. 1.
- 13 E. I. Solomon, K. W. Penfield and D. E. Wilcox, Struct. Bonding (Berlin), 53 (1983) 1.
- 14 K. Moore and G. S. Vigee, Inorg. Chim. Acta, 66 (1982) 125.
- 15 K. D. Karlin, M. S. Haka, R. W. Cruse and Y. Gultnen, J. Am. Chem. Soc., 107 (1985) 5828.
- 16 K. D. Karlin, R. W. Cruse, M. S. Haka, Y. Gultnen and B. L. Cohen, *Inorg. Chim. Acta*, 125 (1986) L43.
- 17 F. Ullman and K. Brittner, Ber. Dtsch. Chem. Ges., (1909) 2539.
- 18 C. J. O'Connor, Prog. Inorg. Chem., 29 (1982) 203.
- 19 P. Main, S. J. Fiske, S. E. Hull, L. Lessinger, G. Germaine, J. P. Declercq and M. M. Woolfson, *MULTAN 80*, a system of computer programs for the automatic solution

of crystal structures from X-ray diffraction data, Universities of York, U. K. and Louvain, Belgium, 1980.

- 20 International Tables for X-ray Crystallography, Vol. IV, Kynoch, Birmingham, U.K., 1974.
- 21 B. A. Frenz, in H. Schenk, R. Olthof-Hazekamp, H. van Koningsveld and G. C. Bassi (eds.), *Computing in Crystallography*, Delft University Press, Delft, The Netherlands, 1982.
- 22 R. J. Majeste, C. L. Klein and E. D. Stevens, Acta Crystallogr., Sect. C, 39 (1983) 52.
- 23 H. Hartl, I. Brudgam and F. Mahdjour-Hasson-Abadi, Z. Naturforsch., Teil B, 40 (1985) 1032.
- 24 H. Rath and E. M. Holt, J. Chem. Soc., Chem. Commun., (1985) 665.
- 25 N. P. Rath, E. M. Holt and K. Tonimura, *Inorg. Chem.*, 24 (1985) 3934.
- 26 G. A. Bowmaker, G. R. Clark and D. A. Rogers, J. Chem. Soc., Dalton Trans., (1984) 37.
- 27 H. Hartl and J. Fuchs, Angew. Chem., Int. Ed. Engl., 25 (1986) 569.