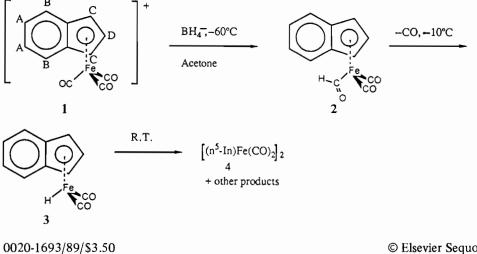
Hydride Reduction of $[(\eta^5-\text{Indenyl})\text{Fe}(\text{CO})_3]\text{BF}_4$: Evidence for $(\eta^5-\text{Indenyl})(\text{CO})_2\text{Fe}\text{CHO}$ and $(\eta^5-\text{Indenyl})(\text{CO})_2\text{Fe}\text{H}$

HAKIM AHMED, DAVID A. BROWN*, NOEL J. FITZPATRICK and WILLIAM K. GLASS Department of Chemistry, University College, Belfield, Dublin 4 (Ireland)

(Received April 12, 1989)

Although the hydride $(\eta^{5}$ -Cp(CO)₂FeH is well documented (see ref. 1 and refs. therein) and the corresponding formyl $(\eta^{5}$ -Cp)(CO)₂FeCHO more recently identified by low temperature ¹H NMR spectroscopy [2], there have been, to the best of our knowledge, no previous reports of the analogous indenyl compounds. We report now spectroscopic (IR and ¹H NMR) evidence for these compounds by reduction of the tricarbonylindenyliron cation $[(\eta^{5}-In)Fe(CO)_{3}]^{+}$ (1) by sodium borohydride in acetone.

Experimental


Typically for the low temperature IR studies, cation 1 (0.06 g) was dissolved in acetone (20 ml) at -80 °C and NaBH₄ (0.007 g), also in acetone (5 ml), was added at -80 °C. After stirring briefly (c. 2 min), a sample was withdrawn for immediate IR analysis in the region 1700–2200 cm⁻¹, using low-temperature cells. Monitoring by low-temperature ¹H NMR was performed as follows: to a solution of

*Author to whom correspondence should be addressed.

cation 1 in acetone- d_6 (15 mg in 0.6 ml) in an NMR tube at -80 °C was added a solution of NaBH₄ in acetone-d₆ (2 mg in 0.4 ml) at -80 °C, with both solutions under argon. A solution of 3 was prepared by the same method [1] as the analogous $(\eta^{5}-Cp)$ -(CO)₂FeH, namely, by treating 20 ml of a solution of the dicarbonylindenyliron anion, $[(\eta^{5}-In)Fe$ - $(CO)_2$]⁻, with glacial acetic acid (5 ml) at 0 °C under nitrogen. $[(\eta^{5}-In)Fe(CO)_{2}]^{-}$ was prepared by reducing $[(\eta^5 - \text{In})\text{Fe}(\text{CO})_2]_2$ (4) (1.00 g) with sodium amalgam (1.00 g of sodium in 100 ml of mercury in THF (70 ml), stirring for 1 h under nitrogen and subsequent removal of the amalgam by separation). A sample of 3 was also prepared for NMR studies but on a reduced scale (50 mg of 4 in 5 ml THF- d_8) under argon and at 0 °C. Attempts to isolate 3 resulted only in decomposition and reformation of the dimer 4. NMR spectra were measured on a JEOL GX 270 MHz instrument. IR spectra were obtained on a Perkin-Elmer 1720 FT-IR spectrometer linked to a 3700 data station.

Results and Discussion

The initial IR spectrum of the cation 1 treated with NaBH₄ in acetone at -80 °C, as described above, showed peaks at 2040 and 1992 cm⁻¹, with virtually no absorption from cation 1 (ν (CO) = 2117 and 2069 cm⁻¹). On warming to -10 °C, the above peaks were replaced by ν (CO) = 2011 and 1950 cm⁻¹. A solution of 3 prepared directly from the dicarbonylindenyl anion as above also showed peaks at 2011 and 1950 cm⁻¹. Thus, the peaks observed at -10 °C in the reaction of 1 with borohydride in acetone are assigned to the hydride 3 and those at -60 °C (2040 and 1992 cm⁻¹) to the formyl 2, since at this temperature the ¹H NMR spectrum gives

© Elsevier Sequoia/Printed in Switzerland

clear evidence for a metal-formyl (see below). The IR study was repeated in acetone-d₆ for direct comparison with the NMR study and very similar frequencies were obtained (at $-60 \degree C \nu(CO) = 2039$ and 1992 cm⁻¹; at $-10 \degree C \nu(CO) = 2010$ and 1951 cm^{-1}). To the solution of cation 1 in acetone-d₆ was added NaBH₄, as described above. At -80 °C, resonances developed at δ 12.79 ppm characteristic of a metal-formyl hydrogen [3], together with peaks in the region of δ 7.5 ppm due to an A₂B₂ system of the six-membered ring, and at δ 6.30 (d, J_{CD} 2.79 Hz, C, 2H) and δ 5.45 (t, J_{CD} 2.79 Hz, D, 1H) due to the three hydrogens of the fivemembered ring of the iron formyl 2. Resonances due to cation 1 were also present in the δ 7.9 region and were assigned to the A_2B_2 system, and at $\delta\ 6.68$ (d, J_{CD} , 2.75 Hz, C, 2H) and δ 6.35 ppm (t, J_{CD} 2.75 Hz, D, 1H). As the temperature was raised to -50 °C, the peaks of the formyl 2 were replaced by a new resonance at $\delta - 15.34$ (upfield from TMS $\delta = 0$), characteristic of a metal-hydride hydrogen, and ring resonances in the δ 7.5 ppm region were assigned to the A2B2 system of the six-membered ring, and δ 5.54 (d, J_{CD} 2.94 Hz, C, 2H) and δ 5.63 (t, J_{CD} 2.94 Hz, D, 1H) to the three hydrogens of the five-membered ring of the metal hydride 3. As in the IR studies, a sample of 3 was prepared from the indenvel dimer 4 in THF- d_8 , as described above. The ¹H NMR spectra showed resonances at $\delta = 15.37$ ppm and ring hydrogen resonances for the A_2B_2 system in the region δ 7.25 and at δ 5.12 (d, C, 2H) and δ 5.21 (t, D, 1H). These latter peaks for the hydride 3 are inverted with respect to the formyl 2 but their assignments were confirmed by decoupling experiments and integrations.

The NMR results confirm the IR studies and show that reduction of cation 1 by sodium borohydride in acetone at -80 °C results in initial hydride attack on a metal-carbonyl group to form $(\eta^5-In)(CO)_2$ -FeCHO (2) which is only stable below about -55°C. On raising the temperature to -50 °C, the formyl is replaced by the hydride $(\eta^5-In)(CO)_2$ FeH (3) which remains stable in solution up to about 0 °C. The identity of 3 follows from a comparison of the IR and ¹H NMR spectra of the reaction mixtures at -10 °C with those of the independently synthesized hydride solutions. All attempts to isolate 2 and 3 were unsuccessful.

Raising the temperature of either the reaction mixture or hydride solutions to 25 $^{\circ}$ C gave the indenyl dimer 4 but the ¹H NMR spectra become very complex, probably due to the formation of a number of ring hydride-addition compounds as well as the dimer, which contrasts with the analogous Cp series where only the dimer is fomed [2]. Further studies of these reactions are in progress.

Acknowledgements

We thank Ms Geraldine Fitzpatrick and Dr A. Rous of the Chemical Services Unit, University College, Dublin, for their kind help in measuring the NMR spectra.

References

- S. B. Fergusson, L. J. Sanderson, T. A. Shackleton and M. C. Baird, *Inorg. Chim. Acta*, 83 (1984) L45.
- 2 D. A. Brown, W. K. Glass and M. T. Ubeid, *Inorg. Chim.* Acta, 89 (1984) L7.
- 3 J. A. Gladysz, Adv. Organomet. Chem., 20 (1982) 1.