Electrical and Spectroscopic Properties of Bis(dmit)oxomolybdenum(2-) (dmit = 4,5-dimercapto-1,3-dithiole-2-thionate) Anion Complexes and the Oxidized Analogs

TAKASHI NOJO, GEN-ETSU MATSUBAYASHI* and TOSHIO TANAKA *Department of Applied Chemistry, Faculty of Engineering, Osaka University, Yamadaoka, Suita, Osaka 565, Japan* (Received August 30,1988)

Abstract

 $[NBu^n_4]_2 [MoO(dmit)_2]$ (1) $(dmit = 4.5\text{-}dimer$ capto-1,3-dithiole-2-thionate; $C_3S_5^{2-}$) and $[NMA]_2$ - $[MoO(dmit)₂]$ (2) (NMA = N-methylacridinium) were prepared. The $[MoO(dmit)_2]^2$ anion with a square pyramid geometry around the molybdenum atom is electrochemically reversibly oxidized at $+0.12$ V (versus SCE) to form the stable $[MoO(dmit)₂]$ anion. By reactions of **1** with iodine in the presence of $[MNA][ClO₄]$ and with the tetrathiafulvalenium cation (TTF^+) were isolated $[NMA]_{0.9} [MoO (dmit)_2$] (3) and [TTF] [MoO(dmit)₂] (4), respectively. By reactions of **1** with 7,7,8,8-tetracyano-pquinodimethane and with hydrogen iodide in acetonitrile were obtained complexes formulated as $[NBu^n_4]_{0,15} [MoO(dmit)_2]$ (5) and $[NBu^n_4]_{0,25} [MoO (dmit)_2$ (6), respectively. Although complexes $1-3$ are essentially insulators, 4-6 behave as semiconductors with conductivities 1.1×10^{-5} , 7.3×10^{-3} , and 5.1×10^{-4} S cm⁻¹ at 25 °C for compacted pellets, respectively. IR, ESR, electronic and X-ray photoelectron spectra of the complexes are discussed.

Introduction

Electrically conducting metal complexes with sulfur-rich dithiolene ligands have been recently studied $[1-4]$, in which electrical conduction is expected to occur through two- or three-dimensional pathways constructed from intermolecular sulfursulfur contacts. Dmit-metal complexes (dmit = 4,5-dimercapto-1,3-dithiole-2-thionate; $C_3S_5^{2-}$) are of much interest from the standpoint of the intermolecular S-S contacts in planar $[M(dmit)_2]^{\hbar}$ $(M = Ni, Pd, and Pt; n = 0.3-2.0)$ complexes $[4-6]$. Particularly, $[TTF][Ni(dmit)_2]_2$ (TTF = tetrathiafulvalenium) [5] and $[NMe_4] [Ni(dmit)_2]_2$ [6] were reported to become superconductors. Although

nonplanar dmit-metal complexes are also expected to have intermolecular S-S contacts and to construct new packings of the complexes in the crystal phase, few studies on them have been reported to date **[7,81.**

In the course of our study on electrically conducting, nonplanar dmit-metal complexes $[7-9]$, we have found a stable redox process of the [MoO- $(dmit)_2$ ²⁻ anion with square-pyramid geometry and have isolated some complexes containing the oxidized anions. This paper reports electrical properties of these complexes as well as IR, ESR, electronic, and X-ray photoelectron spectroscopies of them.

Experimental

Materials

4,5-Bis(benzoylthio)-1,3-dithiole-2-thione [10], [pyridinium]₂ [MoOCl₅] [11], and $[TTF]$ ₃ [BF₄]₂ [12] were prepared according to the literatures. $[NMA]$ $[ClO₄]$ ($NMA =$ the N-methylacridinium cation) was prepared by the reaction of [NMA]I with Mg [ClO₄]₂ in water and recrystallized from acetone.

Preparation of [MoO(dmit)2/2- Anion Complexes

 $[NBu^n_4]_2 [MoO(dmit)_2]$ (1) was prepared according to the literature [9].

To an acetone (30 cm³) solution of $[NMA][ClO₄]$ (60 mg, 200 μ mol) was added an acetone (30 cm³) solution of 1 (100 mg, 100 μ mol). A brown solid of $[NMA]_2 [MoO(dmit)_2] \cdot 0.5Me_2CO$ (2) precipitated immediately, which was collected by filtration, washed with acetone and dried *in vacua (74%* yield).

*Preparation of [NMA]*_{0.9}[$MoO(dmit)_{2}$] (3)

To an acetonitrile (5 cm3) solution of **1** (50 mg, 50 μ mol) was added an acetonitrile (2 cm³) solution of iodine (3.2 mg, 25 μ mol), followed by addition of an acetonitrile (2 cm^3) solution of Ag[ClO₄] (10.4) mg, 50 μ mol). After a precipitate of AgI was filtered off, the filtrate was added to an acetonitrile (5 cm^3) solution of $[NMA][ClO₄]$ (44 mg, 150 µmol). A

0 Elsevier Sequoia/Printed in Switzerland

^{*}Author to whom correspondence should be addressed.

precipitate of $[NMA]_{0.9} [MoO(dmit)_2]$ (3) formed immediately, was collected by centrifugation, washed with acetonitrile and dried *in vacua (88%* yield).

Preparation of [TTF][MoO(dmit)₂] (4)

To an acetonitrile (60 cm³) solution of $[TTF]_{3}$ - $[BF_4]_2$ (95 mg, 1.2 mmol) was added 1 (120 mg, 1.2 mmol) dissolved in acetonitrile (30 cm^3) . A precipitate of 4 formed immediately, was collected by centrifugation, washed with acetonitrile and dried *in vacua* (98% yield based on 1).

Preparation of [NBuⁿ4]_x[MoO(dmit)₂] ($x = 0.15$ and *0.25)*

To an acetonitrile (30 cm^3) solution of 7,7,8,8tetracyano-p-quinodimethane (TCNQ) (41 mg, 200 μ mol) was added an acetonitrile (10 cm³) solution of 1 (100 mg, 100 μ mol) and the solution was allowed to stand overnight at room temperature. A resulting black precipitate formulated as $[NBu^n_{4}]_{0.15} [MoO (dmit)_2$ (5) was collected by centrifugation, washed with acetonitrile and dried *in vacua* (38% yield).

To an acetonitrile (10 cm^3) solution of 1 (100 mg, 100 μ mol) was added 20 molar amounts of HI dissolved in acetonitrile. A black solid formulated as $[NBuⁿ₄]_{0,25} [MoO(dmit)₂]$ (6) immediately precipitated, was washed with acetonitrile and dried *in uacuo* (66% yield).

Melting points and elemental analyses for the complexes obtained are listed in Table 1.

Physical Measurements

Electronic absorption, powder reflectance [13], ESR $[14]$, and IR spectra $[15]$ were measured as described elsewhere. X-ray photoelectron spectra were obtained by irradiating the complexes with Mg $K\alpha$ X-rays (240 W) at 298 K using a Shimazu-ESCA 750 photoelectron spectrometer with the computer

analyser ESCA PAC 760, and were calibrated with the carbon $1s_{1/2}$ photoelectron peak (285 eV). The peak shift caused by charge-up effect was corrected with the silicon $2s_{1/2}$ peak (149 eV) [16]. The error of the binding energy determination was estimated to be 0.1 eV. Electrical resistivities of compacted pellets were measured by the conventional two-probe technique [17].

Results and Discussion

As was reported in the previous paper [9], the $[MoO(dmit)₂]$ ²⁻ anion assumes a square pyramid geometry around the molybdenum atom and is electrochemically reversibly oxidized at $E_{1/2}^0$ = +0.12 V (versus SCE) ($\Delta E = E_{cp} - E_{ap} = 60$ mV). By an oxidation reaction of complex 1 with iodine in the presence of $Ag[ClO₄]$ and $[NMA][ClO₄]$ complex 3 was isolated, the $\left[\text{MoO(dmit)}_{2} \right]$ ²⁻ anion being essentially, formally one-electron oxidized. Similarly, oxidation of 1 with the tetrathiafulvalenium cation affords 4 which contains also the $[M_0O(dmit)_2]$ anion together with the TTF⁺ radical cation as described below. Both complexes 3 and 4 show an intense IR band at 935 and 930 cm^{-1} , respectively, attributable to the Mo=O stretching which is close to that (930 cm⁻¹) of 1. Thus, the $\left[$ MoO(dmit)₂ $\right]$ ⁻ anion also seems to have a square pyramid geometry quite similar to that of the $[MoO(dmit)_2]^2$ ⁻ anion [9].

Complexes 1 and $\overline{2}$ show the C=C stretching band of the dmit ligand at 1440 cm^{-1} , while 3 and 4 exhibit this band at 1370 and 1350 cm^{-1} , respectively. Such noticeable low-frequency shifts of this band on the oxidation of the anion suggest that oxidation occurs essentially on the dmit ligand rather than the metal center $[15]$. In addition, 4 shows a $\nu(C=C)$ stretching band due to the TTF⁺ radical cation at 1470 cm^{-1} [18, 19].

TABLE 1. Melting Points and Elemental Analyses of the Molybdenum-dmit Complexes

 $NMA = N$ -methylacridinium, $TTF = tetrathiafulvalenium$.

TABLE 2. IR $\nu(C=C)$ and $\nu(Mo=O)$ Frequencies $(cm^{-1})^a$ and Binding Energies (eV) of Mo $3d_{3/2}$ Electrons of the Mo-dmit Complexes

Complex	$\nu(C=C)$	$\nu(Mo=O)$	Binding energies (Mo $3d_{3/2}$)
	1440	930	232.5
$\mathbf{2}$	1440	910	232.7
3	1370	910	233.0
4	1350	935	232.4
5	1300		232.2
6	1300		233.1

aMeasured in KBr disks.

Fig. 1. Powder ESR spectra of 3 and 4 at room temperature.

Binding energies of molybdenum $3d_{3/2}$ electrons determined by X-ray photoelectron spectroscopy are almost unvaried for complexes **1,** 2, 3 and 4 (see Table 2), which is in accordance with the abovedescribed ligand-centered oxidation on 3 and 4.

In contrast to the ESR-silence of complexes **1** and 2, complexes 3 and 4 exhibit intense ESR signals at $g = 1.987$ and 1.983, respectively, although 4 accompanies with the signal (apparently $g = 2.013$) due to the TTF⁺⁺ radical cation $(g_{\text{max}} = 2.016, g_{\text{int}} =$ 2.009, g_{\min} = 2.003) [20] (see Fig. 1). Moreover, the ESR spectrum of an acetonitrile solution containing equimolar amounts of **1** and iodine at room temperature shows an isotropic signal at $g = 1.987$ which has six satellites due to the hyperfine couplings with 95/97Mo nuclei with $I = 5/2$ [$a(^{95/97}$ Mo) = 28.2 \times 10⁻⁴ cm^{-1}] [9].

Fig. 2. Electronic absorption spectra of 1 $(7.1 \times 10^{-5}$ mol dm⁻³) (-----) and of 3 (7.6 \times 10⁻⁻⁵ mol dm⁻³) (----) in acetonitrile.

Figure 2 shows the electronic absorption spectra of **1** and 3 in acetonitrile. The intense bands at 300 and 485 nm observed for **1** are reasonably assigned to local excitations of the dmit ligand, as were observed for $Na₂dmit$ (316 and 514 nm in methanol) and $[NBuⁿ₄]_{2}[Zn(dmit)₂]$ (300 and 530 nm in acetonitrile) [21]. On the other hand, the corresponding bands occur at 280 and 430 nm for complex 3, which are essentially the same as bands observed on the electrochemical oxidation of **1** [9]. Complexes **1,** 2 and 3 show powder reflectance spectra corresponding to the solution absorption spectra, suggesting no significant molecular interaction in the solid state. Moreover, complex 4 gives an intense reflectance band at 790 nm which is due to TTF^*/TTF^* charge transfer transition [22].

Complex **1** reacts with TCNQ in acetonitrile to give a black solid of 5 in which the anion moiety seems to be further oxidized. The IR $\nu(C=C)$ band of the dmit ligand occurs around 1300 cm^{-1} , which is rather close to those of $[M(dmit)_2]^{\delta-}$ ($\delta < 1$; M = Ni, Pd, and Pt) complexes with high conductivities $(1250-1290 \text{ cm}^{-1})$ [15]. Since the IR ν (Mo=O) band has not been observed around 900 cm^{-1} , the configuration around the molybdenum atom of 5 seems to be different from the square pyramid geometry, presumably a MO-O-MO linkage being formed as described below. The powder reflectance spectrum of 5 as well as the absorption spectrum in N , N dimethylformamide is displayed in Fig. 3. The band observed at 370 nm is reasonably assigned to the local excitation of the dmit ligand in the further oxidized complex. A broad band around 800 nm may be assigned to a charge transfer transition from dmitsulfur to molybdenum, as was reported for [MoO- $(S-2, 4, 6\text{-}Pr^1_3C_6H_2)_4$ (803 nm) [23]. The broad band at 480 nm which is not observed for both the [MoO- $(dmit)_2]^2$ ⁻ and $[MoO(dmit)_2]$ ⁻ anions is likely ascribed to a Mo--O-Mo linkage based on the bands reported for $[Mo_2O_3(S_2COR)_4]$ (R = Me, Et, Prⁱ, Buⁿ

Fig. 3. Electronic absorption $(9.2 \times 10^{-5} \text{ mol dm}^{-3}$ in N,Ndimethylformamide) (----) and powder reflectance spectrum $(--1)$ of 5.

and Bu') [24,25]. The complex shows an isotropic, intense ESR signal at $g = 2.008$. The reaction of 1 with HI (or HBr) in acetonitrile also has yielded a black solid of 6. The IR, electronic reflectance and ESR spectra are essentially the same as those of 5. Moreover, binding energies of molybdenum $3d_{3/2}$ electrons for these complexes are essentially the same as those of the other Mo-dmit complexes (see Table 2). To investigate the formation process of 5 and 6, we have measured ESR spectra of acetonitrile solutions containing l/TCNQ and l/HBr. The former solution has revealed a signal due to the $TCNQ^$ anion radical together with signals of oxidized molybdenum species. Since the signal of the $TCNQ^$ radical anion obscures other signals, Fig. 4 shows the ESR spectrum of the latter solution. The signal at $g = 1.989$ indicates the formation of the [MoO- $(dmit)_2$ ⁻ anion in the system. This signal gradually decreases in its intensity with time and concomitantly the intensity of the signal at $g = 2.008$ relatively increases, which corresponds to the signal of complex 6. This finding suggests that $\left[\text{MoO(dmit)}_{2}\right]^{2-}$ is further oxidized via $[MoO(dmit)_2]$ ⁻ to form complex 6 (and 5).

Electrical conductivities (σ) at 25 °C and activation energies (E_a) for the complexes measured for compacted pellets are summarized in Table 3. Complexes 1 and 2 are essentially insulators, because the anions are located separately through the cations in the crystals, as was revealed for the crystal structure of 1 [9]. The other complexes behave as typical semiconductors in the temperature range from -30 to +55 "C. Although complex 3 is in a one-electron dmit-centered oxidized state, it has also very small conductivity, probably because the geometry of the anion is considered to be quite similar to that of 1 and there is no effective interaction between the dmit

Fig. 4. ESR spectra of an equimolar mixture of 1 and HBr in acetonitrile at room temperature: measured immediately $(-\)$ and in 15 min after mixing $(- \cdot \cdot \cdot)$.

TABLE 3. Electrical Conductivities (σ_{25} °C) and Activation Energies (E_a) of the Mo-dmit Complexes^a

Complex	σ_{25} °C (S cm ⁻¹)	$E_{\rm a}$ (eV)
	${<}10^{-10}$	
$\overline{2}$	$<$ 10 ⁻¹⁰	
3	6.7×10^{-9}	0.54
	1.1×10^{-5}	0.31
5	7.3×10^{-3}	0.18
6	5.1×10^{-4}	0.19

a_{Measured} for compacted pellets.

ligands. On the other hand, 4 exhibits somewhat large conductivity. It contains the TTF⁺ radical cation, which may construct a conduction pathway. The conductivity of this complex is relatively large for a TTF+' radical cation simple salt. This may be caused by a columnar structure of the TTF⁺ radical cations, as was reported for $[TTF] [Rh(CO)₂Cl₂]$ [20] and [dibenzotetrathiafulvalenium] $[SnEt₂Cl₃]$ [26] $(\sigma_{25} \circ_{C} = 2.1 \times 10^{-4}$ and 3.3×10^{-5} S cm⁻¹ for crystals, respectively). Complexes 5 and 6 exhibit higher conductivities, which may come from electrical conduction pathways constructed from an intermolecular contact through the MO-O-MO linkage and/or a dmit-dmit interaction through sulfur atoms as reported for some dmit-metal complexes $[4-8, 21]$ may result in the higher conduction.

Acknowledgement

This work has been partially supported by a Miyashita Research grant, for which we thank the Material Research Foundation.

References

- J. S. Miller (ed.), *Extended Linear Chain Compounds,* Plenum, New York, Vol. 1, 2, 1982; Vol. 3, 1983.
- J. M. Williams and K. Carneiro, *Adv. Inorg. Chem. Radiochem., 29* (1985) *245.*
- A. J. Schultz, H. H. Wang, L. C. Soderholm, T. L. Sifter, J. M. Williams, K. Bechgaard and M.-H. Whaangbo, *Znorg. Chem., 26* (1987) *3751,* and refs. therein.
- L. VaIade, J.-P. Legxos, M. Bousseau, P. Cassoux, M. Garbauskas and J. V. Interrante, J. *Chem. Sot., Dalton Trans.,* (1985) *783,* and refs. therein.
- M. Bousseau, L. Valade, J.-P. Legros, P. Cassoux, M. Garbauskas and L. V. Interrante, J. *Am. Chem. Sot., 108* (1986) 1908.
- A. Kobayashi, H. Kim, Y. Sasaki, R. Kato, H. Kobayashi, S. Morinaga, Y. Nishino, K. Kajita and T. Tanaka, *Chem. Lett.,* (1987) 1819.
- G. Matsubayashi, K. Akiba and T. Tanaka, *Inorg. Chem., 27* (1988) *4744.*
- 8 K. Akiba, G. Matsubayashi and T. Tanaka, to be published.
- G. Matsubayashi, T. Nojo and T. Tanaka, *Inorg. Chim. Acta, 154* (1988) 133.
- 10 G. Steimecke, H.-J. Sieler, R. Kirmse and E. Hoyer, *Phosphorus and Sulfur, 7* (1979) 49.
- 11 G. R. Hanson, A. A. Brunette, A. C. McDonell, K. S. Murray and A. G. Wedd, J. *Am. Chem. Sot., 103* (1981) 1953.
- 12 F. Wudl, J. *Am. Chem. Sot., 97* (1975) 1962.
- 13 K. Ueyama, G. Matsubayashi and T. Tanaka, *Inorg. Chim. Acta, 87* (1984) 143.
- 14 G. Matsubayashi, K. Kondo and T. Tanaka, *Inorg. Chim. Acta, 69* (1983) 167.
- 15 Y. Sakamoto, G. Matsubayashi and T. Tanaka, *Inorg. Chim. Acta, I13* (1986) 137.
- 16 R. Nordberg, K. Hamrin, A. Fahlman, C. Nordling and K. Siegbahn, Z. *Phys., 192* (1966) *462.*
- 17 *S.* Araki, H. Ishida and T. Tanaka, *Bull. Chem. Sot. Jpn., 51* (1978) *407.*
- 18 R. Bozio, I. Zanon, A. GirIando and C. Pecile, *J. Chem. Phys., 71* (1979) *2282.*
- 19 *S.* Matsuzaki, N. Koga, I. Moriyama and K. Toyoda, *Bull. Chem. Sot. Jpn., 56* (1983) 2090.
- 20 G. Matsubayashi, K. Yokoyama and T. Tanaka, *J. Chem. Sot., Dalton Trans.,* (1988) *253.*
- 21 *G.* Matsubayashi, K. Takahashi and T. Tanaka, J. *Chem. Sot., Dalton Trans.,* (1988) 967.
- 22 J. B. Torrance, B. A. Scott, B. Welber, F. B. Kaufman and P. E. Seiden, *Phys. Rev. B, 19* (1979) *730.*
- 23 S.-L. Soong, V. Chebolu, S. A. Koch, T. Osullivan and M. MilIar, *Inorg. Chem., 25* (1986) *4067.*
- 24 W. E. Newton, J. L. Corbin and J. W. McDonald, J. *Chem. Sot., Dalton Trans.,* (1974) 1044.
- 25 M. Tatsumisago, G. Matsubayashi, T. Tanaka, S. Nishigaki and K. Nakatsu, *J. Chem. Sot., Dalton Trans.,* (1982) 121.
- 26 G. Matsubayashi, R. Shimizu and T. Tanaka, *J. Chem. Sot., Dalton Trans.,* (1987) 1793.