Nitrile and Isocyanide Adducts of Oxygen-bridged Cationic Biscyclopentadienyl Titanium(IV) and Zirconium(IV) Fragments

HÜSEYIN ASLAN, STEFAN H. EGGERS and R. DIETER FISCHER*

Institut fiir Anorganische und Angewandte Chemie, Universitkt Hamburg, Martin-Luther-King-Platz 6, D-2000 Hamburg 13, F.R.G.

(Received September 2,1988)

Abstract

The well-accessible new aqua complex salts $\left[\frac{\text{[cp}_2M(H_2O)}{2} \cdot \text{[BPh}_4\text{]}_2 \cdot \text{[PH}_2O \text{]} \right]$ and $\left[\text{cp}_2M\text{]}$ $(OH)(H₂O)_n$ [BPh₄] $\cdot mH₂O$ **(B)** $(M = Ti$ or Zr) can easily be dehydrated or converted into anhydrous nitrile and isocyanide derivatives. While, according to crystallographic X-ray studies, the nitrile complexes with M = Ti are of the expected type **A,** the binuclear **cation** of the salt $[cp_2Zr(NC-n-Pr)(\mu\text{-}OH)]_2[BPh_4]_2$ 4NC-n-Pr turns out to be a novel 18 electron system of $Zr(IV)$.

The still continuing investigation of mechanistic details of Ziegler-Natta polymerisations [l] has focused considerable interest on cationic complexes of the type $[cp'_{2}M^{IV}R'L]^+$ (1) $(cp'=\eta^5 \cdot C_5R_5$ with

*Author to whom correspondence should be addressed. **See 'Supplementary Material'.

 $R = H$ or Me; $M = Ti$ [1], Zr [2] and even Th [3]; R' = alkyl or aryl; L = uncharged Lewis base and a ligand vacancy, respectively). In view of the wellconfirmed utility of non-negligible amounts of water in the presence of the usual co-catalyst AlR"Cl_{3-n} [4], we describe here some hydrated homologues of **1** with $M = Ti$ and Zr , $L = H_2O$ and $R' = \frac{1}{2} O$ and OH, respectively, along with some derivatives with $L=$ NCR" and CNR".

The yellow $(M = Ti)$ and white $(M = Zr)$ precipitates $2 \left[5 \right]$ ** resulting in excellent yields according to eqn. (1) are probably free of the cations $[cp₂M (H_2O)_n$ ²⁺ (n = 2 or 3; 3), as the intensity ratio of

\n
$$
\text{cp}_2\text{MCI}_2 \xrightarrow{\text{Na}[\text{BPh}_4], \text{ exc.}} H_2O
$$
\n

\n\n $\left[\{ \text{cp}_2\text{M}(\text{H}_2\text{O}) \} _2\text{O} \right] \left[\text{BPh}_4 \right] _2 \cdot p\text{H}_2O$ \n

\n\n $\text{and/or } [\text{cp}_2\text{M}(\text{OH})(\text{H}_2\text{O})_n] \left[\text{BPh}_4 \right] \cdot m\text{H}_2\text{O} \left(2 \right)$ \n

\n\n $\text{M} = \text{Ti} \left(2a \right), \text{Zr} \left(2b \right)$ \n

\n\n (1)\n

black TiL'*-compd. decomp. **[(cp2Ti111)201n t iv ii\ i"/ [{cp2Ti(NCR)~201[BPh412*nNCR -%L "(cp2Ti)20(BPh4)2" 5a-5c [Ccp2Ti(CNR)1201[BPh412 & 1** ii & iii + **RNC-BPh3 t** other compds. ⁱ&i ii **"cp2Zr(OH)(BPh4)" 1 tcp2Zr(CNR)n(OH)l [BPh41 &J e [cp2Zr(NCR)(wOH)12[BPh412.mNCR** ii iii **2 (R = CMe3) 6a-6c**

Scheme 1. Reagents and conditions: i, high vacuum, 30 °C; ii, pure NCR (R = Me, Et, Prⁿ), room temperature; iii, CNR (exc., R = c-C₆H₁₁, Buⁿ) in n-hexane, room temperature; iv, high vacuum, 70–120 °C.

0020-1693/89/\$3.50 0 Elsevier Sequoia/Printed in Switzerland

their cp and Ph proton resonances** lies constantly around $1/2$. Moreover, notable amounts of pure BPh₃ can be isolated from the n-hexane applied to wash the precipitates suggesting that in the strongly acidic solutions of 3 (pH \leq 1) facile proton attack of one BPh₄ counter-anion takes place.

At high vacuum and 30 $^{\circ}$ C, both 2a and 2b can be transferred (Scheme 1) into their completely anhydrous derivatives 4a** and 4b** which turn out, possibly due to partial η^{n} -PhBPh₃ coordination [3], unable to form any isolable adducts with $H₂O$, NCR and CNR. Between 55 and 100 "C at a high vacuum, 4a undergoes reductive elimination to the dark blue and reportedly [6] polymeric, $[(cp_2Ti^{III})_2O]_n$, wellsubliming $BPh₃$ and probably $Ph-Ph$.

Aliphatic nitriles $RCN (R = Me, Et, n-Pr)$ readily withdraw all H_2O from 2a and 2b affording in almost quantitative yields the corresponding nitrile-solvated nitrile adducts $[\{cp_2Ti(NCR)\}_2O] [BPh_4]_2 \cdot nNCR$, 5a-5c**, and $[{cp_2Zr(NCR)}_2(\mu\text{-}OH)_2][BPh_4]_2$. $mNCR$, 6a $-6c**$, respectively. Owing to difficultie in arriving at throughout stoichiometrically welldefined dry solvates, the elemental analyses and ${}^{1}H$ NMR spectroscopic results** (at least in view of the intensity ratios $I(cp)/I(CNR)$ and $I(Ph)/I(NCR)$ did not match in all cases with the results of the crystallographic X-ray studies of modestly dried single crystals[†] of 5a $(n = 1)$ and 6c $(m = 4)$.

The cation of 5a (Fig. 1) resembles that of the salt $[\{cp_2Ti(NCC_2H_4Ph)\}_2O]$ $[FeCl_4]_2\cdot PhC_2H_4CN\cdot C_6H_6$ (7) [7] the rather short distance $(Ti-O)_{ave}$ of 1.83 Å, the large $Ti-O-Ti'$ angle of 176.1° and the acute angle spanned by the two Ti-N vectors of $79.5(2)^\circ$ being as usual indicative of ambilateral $0 \rightarrow Ti \pi$ donor bonding. 5 loses $B Ph_3$ like $2a$, at a high vacuum and ca. 70 \degree C, the concomitant colour change (to almost black) taking place, however, not below ca .

Fig. 1. Unit cell of 5a (Schakal plot; dashed circles of nitrile atoms). Selected distances and angles: $[Ti1 - C(cp1)]_{ave}$ 2.363(06); $[Ti1-C(cp2)]_{ave} 2.375(06); Ti1-N1 2.141(05);$ Ti2-N2 2.148(05) A; centl-Til-cent2 131.3(3); cent3- Ti2-cent4 132.7(3); 0-Til-Nl 94.0(2); O-Ti2-N2 93.8- $(2)^{\circ}$.

Fig. 2. Schakal plot of the cation of 6c. Selected distances and angles: $O...O'$ 2.369(05); $[Zr-C(cp1)]_{ave}$ 2.512(06); $[Zr-C(cp2)]_{ave}$ 2.536(06) A; O-Zr-O' 66.4(01); Zr-O-Zr' 113.6(02); Zr-N-Cl 175.9(05); N-Zr-centl 97.8(02)°.

120 \degree C. (Attempts to characterize a still orange-red 'intermediate' of possible composition $(\text{cp}_2\text{TiPh})_2\text{O}$ are presently in progress.)

The $(ZrNOO')_2$ fragment of the centrosymmetric cation of 6c (Fig. 2) $(Zr=0, 2.154(03); Zr=0)$ 2.174(03); Zr--N, 2.327(05) Å; angle N-Zr-0 139.5(02)^o) is coplanar as expected by theory $[8]^*$.

^{**}See 'Supplementary Material'.

^{*}To avoid rapid weathering, all crystals had to be coated, under an atmosphere of the respective nitrile, with a thin film of oxygen-free paraffin oil. Crystal data of 5a: $C_{74}H_{69}N_3$ -OB₂Ti₂; $M_r = 1130.80$; triclinic, space group $P\bar{1}$ (No. 2, Int. Tab.); $a = 13.869(5)$, $b = 14.125(5)$, $c = 18.583(5)$ A, $\alpha =$ 91.94(2), β = 103.71(3), γ = 117.64(2)°; *V* = 3089.0(19) A³; $Z = 2$, $D_{\text{calc}} = 1.22$ g cm⁻³. Structure refinement to $R(F)$ and $R_{\text{w}}(F)$ of 0.059 and 0.058, respectively, by using 5618 symmetry-independent reflections with $|F_{0}| > 3\sigma(F_{0})$. Crystal data of 6c: $C_{92}H_{104}N_6O_2B_2Zr_2$; $M_{\rm r}$ = 1529.93; triclinic, space group $\overline{P_1}$ (No. 2, Int. Tab.); $a = 11.202(2)$, $b = 13.543$ -(5), $c = 13.553(3)$ A; $\alpha = 76.67(3)$, $\beta = 84.61(3)$, $\gamma = 82.17$ -(2)^o; $V = 1977.9(10)$ A³; $Z = 1$ (asymmetric unit: half a molecule), $D_{\text{calc}} = 1.28 \text{ g cm}^{-3}$. Data were collected on a Syntex P2₁ diffractometer at 22 °C (Mo K α radiation, λ = 0.709261 A, $2\theta_{\text{max}} = 45.0^{\circ}$). Structure refinement to $R(F)$ and $R_{\rm w}(F) = 0.065$ by using 5347 symmetry-independent reflections with $|F_{\text{o}}| > 3\sigma(F_{\text{o}})$. The structures of 5a and 6c were solved by direct methods (SHELXS-84), Fourier- and least-squares techniques. See also 'Supplementary Material'.

^{*}Some apparently mononuclear $(C_5Me_5)_2Zr(OH)X$ -systems $(X = C1, OH, H)$ have already been described [9]. See also 'Note Added in Proof'.

Both the angle cent-Zr-cent' of $124.8(03)^\circ$ and the $Zr \cdot Zr'$ distance of 3.623(02) Å exceed only weakly the corresponding data of the recently described complex $(cp_2Zr)_2(\mu-S)_2$ (122.7° and 3.529(2) Å, respectively) $[10]^\dagger$. The presence of coordinated and uncoordinated (the latter in two non-equivalent lattice sites) NC-n-Pr is also reflected by the appearance of three different ν -CN bands in the IR spectrum of $6c$ ^{**}. The formation of the heretofore unreported cations $[(cp_2ZrL)_2(\mu\text{-}OH)_2]^{2+}$ may be favoured in the presence of $B Ph_4^-$ anions that are likely to hamper the otherwise facile protolytic rupture of $cp-Zr$ bonds $[11]$. Our present findings not only describe the structures of 5 and 6 in general, but probably also the main structural features of their precursors **2a** and **2b.**

With isocyanides **2a** and 2b afford strictly anhydrous products, too, the derivatives of 2a displaying usually ν -CN absorptions (IR) in three different ranges: (i) close to the absorption of free RNC $(R = c - C_6H_{11}, 2150 \text{ cm}^{-1})$; (ii) at wave numbers most likely for RNC coordinated to cationic d^0 -systems^{TT} $(R = c - C_6H_{11}$, 2220 cm⁻¹); and, occasionally, (iii) notably close to the absorptions of adducts RNC. BPh₃ [12] (R = c-C₆H₁₁, 2270 cm⁻¹). Unlike 2a, 2b reacts with $n-C_4H_9NC$ to one singular, light brown isocyanide complex 8^{**} (ν -CN, 2230 cm⁻¹, broad), which product is likewise accessible from 6b. Reaction of $2b$ and $6a$ with $c - C_6H_{11}NC$ leads presumably to mixtures of products (from 2b: light brown, v-CN, 2170 and 2275 cm^{-1} ; from 6a: 2165, 2210, 2265 and 2310 cm^{-1}), the latter light yellow material being not free of $CH₃CN$. The nitrile complexes 5 do not react with RNC at all.

Supplementary Material

Additional information (marked** in the text) is available from the authors on request. See also ref. 13.

Acknowledgements

We are grateful to the Deutsche Forschungsgemeinschaft, D.F.G. (Bonn) and the Fonds der Chemischen Industrie (Frankfurt/M.) for financial support.

References

- 1 M. Bochmann and L. M. Wilson, J. Chem. Soc., Chem. *Commun.,* (1986) 1610.
- 2 R. F. Jordan and S. F. Echols, *fnorg. Chem.,* 26 (1987) 383; R. Willett, J. Am. Chem. Soc., 109 (1987) 4111.
- 3 Z. Lin, J.-F. LeMarechal and T. J. Marks, J. *Am.* Chem. Soc., 109 (1987) 4127.
- 4 H. Sinn and W. Kaminsky, *Adv. Organomet.* Chem., 18 (1980) 99.
- 5 H. Aslan, T. Sielisch and R. D. Fischer, *J. Organomet. Chem., 315 (1986) C69.*
- *6* R. S. P. Coutts, B. Kautzner and P. C. Wailes, *Aust. J.* Chem., 22 (1969) 1137.
- 7 K. Berhalter and U. Thewalt, *J. Organomet. Chem., 332 (1987) 123.*
- *8* J. W. Lauher and R. Hoffmann, *J. Am.* Chem. Sot., 98 (1976) 1729.
- 9 G. L. Hillhouse and J. E. Bercaw, *J. Am. Chem. Soc.*, 106 (1984) 5472.
- 10 F. Bottomley, D. F. Drummond, G. 0. Egharevba and P. S. White, *Organometallics, 5 (1986) 1620.*
- 11 J. H. Toney and T. J. Marks, *J. Am. Chem. Sot.. 107* (1985) 947; W. Lasser and U. Thewalt, *J. Organome*. *Chem.. 311 (1986) 69.* and refs. therein.
- 12 G. Hesse, H. Witte and G. Bittner, *Liebigs Ann. Chem.*, *687 (1965)* 1.
- 13 H. Aslan and R. D. Fischer, *J. Organomet. Chem., 315 (1986) C64.*

Note Added in Proof

Very similar data have also been reported for the nonionic complex $[cp_2Zr(OCOCF_3)(\mu-OH)]_2$: S. Klima and U. Thewalt, *J. Organomet. Chem., 3.54 (1988) 77.*

⁺These authors have alluded on the significance of exceptionally acute cent-M-cent' angles in view of theoretical predictions [8]. *See* also 'Note added in Proof'.

^{**}See 'Supplementary Material'.

[†] One recent example of this still very rare type is the salt $[cp₂Ti(CNBu^t)(\eta²-CMe=NBu^t)][BPh₄]+MeCN$ (ν -CN: 2190 cm^{-1}); see ref. 1.