

The preparation of the novel seven-coordinate compound $[MoCl(GeCl_3)(CO)_3(NCMe)_2]$ and its reactions with one equivalent of L $(L=PPh_3, AsPh_3 \text{ or } SbPh_3)$ to give $[MoCl(GeCl_3)(CO)_3(NCMe)L]$ or $[MoCl(GeCl_3)(CO)_2(NCMe)_2L]$ depending upon the solvent

Paul K. Baker* and Dafydd ap Kendrick Department of Chemistry, University of Wales, Bangor, Gwynedd LL57 2UW (U.K.)

(Received May 31, 1991; revised July 21, 1991)

Many seven-coordinate dihalocarbonyl complexes of the type $[MX_2(CO)_3L_2]$ (M=Mo or W; X=Cl, Br or I; L = Group 5 donor ligand) have been prepared [1]. The importance of these compounds has been highlighted by the catalytic activity of $[MX_2(CO)_3L_2]$ $(M = Mo \text{ or } W; X = Cl \text{ or } Br; L = PPh_3 \text{ or } AsPh_3)$ for the ring-opening polymerisation of norbornene and norbornadiene [2]. However, analogous halogermanium compounds are scarce; some early examples of this type which have been reported are $[MoX(GeX_3)(CO)_3(bipy)]$ (X = Cl or I) [3]. In this communication we describe the synthesis of the novel highly seven-coordinate compound reactive [MoCl(GeCl₃)(CO)₃(NCMe)₂] (1), and report its reactions with 1 equiv. of L $(L = PPh_3, AsPh_3 \text{ or } SbPh_3)$ in CH_2Cl_2 and NCMe.

Results and discussion

Equimolar quantities of $[Mo(CO)_3(NCMe)_3]$ (prepared *in situ* by reacting $[Mo(CO)_6]$ in refluxing acetonitrile for 24 h [4]) and GeCl₄ react *in situ* to afford an orange solution which after removal of the solvent *in vacuo* gives the golden yellow solid $[MoCl(GeCl_3)(CO)_3(NCMe)_2]$ (1) in high yield. This reaction presumably occurs by oxidative-addition of the zero-valent complex $[Mo(CO)_3(NCMe)_3]$ with

GeCl₄ to give via cleavage of a Ge-Cl bond and elimination of an acetonitrile molecule the oxidized product 1. Compound 1 is very air-sensitive in the solid state and extremely air-sensitive in solution, however it can be stored under nitrogen for prolonged periods of time. Compound 1 is soluble in polar solvents such as CHCl₃, CH₂Cl₂, NCMe or OC(Me)₂, however it is only very slightly soluble in hydrocarbon solvents and Et₂O. Complex 1 has been characterised by IR (Table 1), ¹H NMR spectroscopy (Table 2) and elemental analysis (C, H and N) (Table 3). The structure of 1 is likely to be capped octahedral since most seven-coordinate [MX₂(CO)₃L₂] complexes have this geometry [5]. The related diiodo compound [WI₂(CO)₃(NCMe)₂] has been shown by X-ray crystallography [6] to have the structure shown in Fig. 1, where the two iodide ligands have been replaced by a chloride ligand on the capping face and the considerably larger GeCl₃ group on the uncapped face, which may be the structure of 1.

The reactions of $[MoCl(GeCl_3)(CO)_3(NCMe)_2](1)$ with an equimolar amount of L (L=PPh₃, AsPh₃ or SbPh₃) in CH₂Cl₂ at room temperature gave the acetonitrile displaced products $[MoCl(GeCl_3)-$

TABLE 1. IR data^a for the complexes [MoCl(GeCl₃)-(CO)₃(NCMe)₂], [MoCl(GeCl₃)(CO)₃(NCMe)L] and [MoCl(GeCl₃)(CO)₂(NCMe)₂L]

Com- plex	$\nu(C \equiv O) \ (cm^{-1})$	$\nu(N \equiv C) \ (cm^{-1})$
1	2040(s), 1953(s), 1877(m)	2314(m), 2286(m)
2	2025(m), 1940(s), 1870(s)	2300(w), 2280(w)
3	2020(m), 1930(s), 1875(s)	2300(w), 2280(w)
4	2020(s), 1925(s), 1860(s)	2300(w), 2280(w)
5	1945(s), 1870(s)	2300(w), 2280(w)
6	1945(s), 1875(s)	2300(w), 2285(w)
7	1945(s), 1880(s)	2300(w), 2285(w)

*Spectra recorded as thin films in CHCl₃ between NaCl plates; s, strong; m, medium; w, weak.

TABLE 2. ¹H NMR data for the complexes [MoCl(GeCl₃)-(CO)₃(NCMe)₂]^{*}, [MoCl(GeCl₃)(CO)₃(NCMe)L]^{*} and [MoCl(GeCl₃)(CO)₂(NCMe)₂L]^b

Com- plex	¹ H NMR (δ) (ppm)			
1	2.45 (s, Me)			
2	7.4 (m, 15H, Ph); 2.4 (s, 3H, Me)			
3	7.35 (m, 15H, Ph); 2.4 (s, 3H, Me)			
4	7.6, 7.45, 7.35 (m, 15H, Ph); 2.2 (s, 3H, Me)			
5	7.40 (m, 15H, Ph); 2.35 (s, 6H, Me)			
6	7.35 (m, 15H, Ph); 2.3 (s, 6H, Me)			
7	7.6, 7.45, 7.35 (m, 15H, Ph); 2.3 (s, 6H, Me)			

*Spectra recorded in $CDCl_3$ (25 °C) and referenced to Me₄Si. *Spectra recorded in CD_3COCD_3 (25 °C).

^{*}Author to whom correspondence should be addressed.

Compound	Colour	Yield (%)	Analysis (%) ^a			Reaction
			с	н	N	times
$[MoCl(GeCl_3)(CO)_3(NCMe)_2] (1)$	golden brown	94	17.2	1.5 (1.3)	6.1 (5.9)	
$[MoCl(GeCl_3)(CO)_3(NCMe)(PPh_3)] (2)$	golden brown	53	39.2 (39.6)	2.7	1.5 (2.0)	1 min
$[MoCl(GeCl_3)(CO)_3(NCMe)(AsPh_3)] (3)$	golden brown	53	37.6 (37.2)	2.5 (2.4)	1.5 (1.9)	3 min
$[MoCl(GeCl_3)(CO)_3(NCMe)(SbPh_3)] (4)$	orange	50	34.7 (35.0)	2.4 (2.3)	1.4 (1.8)	5 min
$[MoCl(GeCl_3)(CO)_2(NCMe)_2(PPh_3)] (5)$	yellow	47	40.1 (40.6)	2.4 (3.0)	3.7 (3.9)	18 h ^b
$[MoCl(GeCl_3)(CO)_2(NCMe)_2(AsPh_3)] (6)$	yellow	41	37.7 (38.2)	2.7 (2.8)	3.4 (3.7)	18 h ^b
$[MoCl(GeCl_3)(CO)_2(NCMe)_2(SbPh_3)] (7)$	yellow	44	36.0 (36.0)	2.6 (2.6)	3.2 (3.5)	18 h ^b

TABLE 3. Physical and analytical data for the complexes $[MoCl(GeCl_3)(CO)_3(NCMe)_2]$, $[MoCl(GeCl_3)(CO)_3(NCMe)L]$ and $[MoCl(GeCl_3)(CO)_2(NCMe)_2L]$

⁴Calculated values in parentheses.^bA precipitate of the products started to form after 1, 3 and 5 min for 5 and 6 and 7, respectively; however, these reactions were left overnight to obtain a higher yield.

Fig. 1. Proposed structure of the seven-coordinate complex $[MoCl(GeCl_3)(CO)_3(NCMe)_2]$ (1).

 $(CO)_3(NCMe)L]$ (2-4) in good yield. Compounds 2-4 have been characterised by elemental analysis, IR and ¹H NMR spectroscopy (Tables 1-3). However, equimolar quantities of 1 and L (L=PPh₃, AsPh₃ or SbPh₃) react in NCMe to give, after initial effervescence of CO, the bis-acetonitrile complexes [MoCl(GeCl₃)(CO)₂(NCMe)₂L] (5-7). Complexes 5-7 have also been characterised by elemental analysis (Table 3), IR (Table 1) and ¹H NMR spectroscopy (Table 2). Compounds 2-7 are all considerably more stable than 1. The mono-acetonitrile compounds 2-4 are more soluble in polar solvents than the bisacetonitrile complexes 5-7.

References

- (a) F. A. Cotton and B. F. G. Johnson, Inorg. Chem., 3 (1964) 1609; (b) W. S. Tsang, D. W. Meek and A. Wojcicki, Inorg. Chem., 7 (1968) 1263; (c) R. Colton and G. P. Scollary, Aust. J. Chem., 21 (1968) 1435; (d) J. R. Moss and B. L. Shaw, J. Chem. Soc. A., (1970) 595; (e) R. Colton, Coord. Chem. Rev., 6 (1971) 269; (f) A. D. Westland and N. Muriithi, Inorg. Chem., 12 (1973) 2356; (g) P. K. Baker, S. G. Fraser and E. M. Keys, J. Organomet. Chem., 309 (1986) 319; (h) P. K. Baker and S. G. Fraser, Inorg. Chim. Acta, 130 (1987) 61; (i) P. K. Baker and S. G. Fraser, Transition Met. Chem., 12 (1987) 560; (j) P. K. Baker, S. G. Fraser and M. G. B. Drew, J. Chem. Soc., Dalton Trans., (1988) 2729; (k) K. -B. Shu, K. S. Lion, S. L. Wang and S. C. Wei, Organometallics, 9 (1990) 669.
- 2 (a) L. Bencze and A. Kraut-Vass, J. Mol. Catal., 28 (1985) 369; (b) L. Bencze, A. Kraut-Vass and L. Prókai, J. Chem. Soc., Chem. Commun., (1985) 911.
- 3 R. Kummer and W. A. G. Graham, Inorg. Chem., 7 (1968) 310.
- 4 D. P. Tate, W. R. Knipple and J. M. Augl, Inorg. Chem., 1 (1962) 433.
- 5 M. G. B. Drew, *Prog. Inorg. Chem.*, 23 (1977) 67, and refs. therein.
- 6 M. G. B. Drew, P. K. Baker, E. M. Armstrong and S. G. Fraser, *Polyhedron*, 7 (1988) 245.