Melt syntheses of some $[PtCl₂]₂]$ complexes

Duncan W. Bruce*, Bertrand Donnio, Andrew A. Maggs and Julian R. Marsden *Depattrnent of Chemistry, The Universiry Sheffield S3 7HF (U.K.)*

(Received February 14, 1991; revised May 24, 1991)

Abstract

Reaction of PtCI₂ in the melt of a ligand, L, leads in most cases to the complex $[PtCl₂L₂]$ in good **yield, with short reaction time. In all cases either** pure cis or pure *truns* isomer is produced, depending on the nature of **L.**

Introduction

As part of our work on metal-containing liquid crystals [11, we synthesized a large family of complexes of the general formula trans- $[MCl_2L_2]$ (M = Pd, Pt) where L was a mesogenic organonitrile of type I.

The palladium complexes were readily obtained in a simple substitution reaction between the ligand and $[PdCl₂(PhCN)₂]$ in acetone at room temperature giving the pure *tram* isomer in good to moderate yield [2]. Initially, the analogous platinum complexes were obtained in a similar manner by reaction of cis -[PtCl₂(PhCN)₂] [3] with the ligand in refluxing toluene [2]. This again gave the pure *trans* isomer, but typically in yields of around 30-40% with some decomposition to platinum metal. These yields were not improved by use of the *truns* isomer of the starting material. Given the cost of platinum starting materials and also of the mesogenic ligands in which we were interested, it seemed appropriate to try to find an improved synthesis of these materials.

Experimental

Microanalysis was by the University of Sheffield Microanalytical Service. IR spectra were recorded between 4000 and 600 cm^{-1} on a Perkin-Elmer 1600 FT instrument and between 600 and 200 cm^{-1} on a Perkin-Elmer PE 684. All of the chemicals were used as supplied by the manufacturer. ${}^{31}P{^1H}$ NMR spectra were recorded on a Bruker WP80-SY instrument at 32.4 MHz with broad band proton decoupling.

Preparation of the complexes

All complexes were prepared in the same way according to the procedure exemplified by the formation of $[PtCl₂(7CB)₂]$, although other solvent combinations were sometimes used to crystallise the complexes.

4-Heptyl-4'-cyanobiphenyl (7CB; 831 mg) was heated to 140 °C and $PtCl₂$ (269 mg) was added with stirring. The temperature was maintained for 30 min during which time the mixture solidified, turning yellow. After cooling to room temperature, the **solid mixture was dissolved in chloroform and filtered twice through celite to remove unreacted PtCl,, before a large excess of diethyl ether was added to precipitate the complex. The precipitated solid was recovered by centrifugation (this was found to be better than simple filtration) and then crystallised from chlorofoxm/diethyl ether to give yellow crystals in 70% yield.**

Yields and spectroscopic data for this and other complexes are presented in Table 1. The new complexes were also characterised by microanalysis (for which satisfactory C, H and halide percentages were obtained), while known complexes were characterised principally by their spectroscopic parameters.

Results and discussion

It has previously been reported [3) that a mixture of cis- and trans- $[PtCl₂(PhCN)₂]$ could be obtained

^{*}Author to whom correspondence should be addressed.

TABLE I. Yields and spectroscopic data for the complexes

MX ₂	Ligand	Yield (%)	$\nu(M-X)$ (cm^{-1})	$\nu(C \equiv N)$ (cm^{-1})	Geometry
PtCl ₂	7CB	73	345	2295	trans
P ₁ Cl ₂	CCH ₅	67	345	2305	trans
P ₁ Cl ₂	PCH ₅	51	345	2295	trans
PtBr ₂	7CB	49	248	2290	trans
PdCl ₂	7CB	15	370	2290	trans
PtCl ₂	3-OPhVPy	56	350		trans
PtCl ₂	12-OPhVPy	58	350		trans
PtI ₂	3-OPhVPy	44			trans
PtCl ₂	bipy	10	333, 295		cis
PtCl ₂	PPh_3	57	310, 295	3673^a	cis
PtCl ₂	$P(OPh)$ ₃	14	330, 305	3857^a	cis
PtBr ₂	PPh ₃	82	248, 240	3614^a	cis
PtI ₂	PPh ₃	63		2494^a	trans
PdCl ₂	PPh ₃	35	360		trans
PtCl ₂	dppm	60 ^b		2025 ^ª	

 $\mathbf{P}^1 J(\text{Pt-P})$. **b**Yield of $[\text{Pt(dppm)}_2]\text{Cl}_2$.

by the **direct reaction of** PtCl, with PhCN and that the ratio of *trans/cis* increased with increasing temperature of the reaction. The two products were separated by column chromatography. Similarly the direct reaction between $[PtCl₄]^{2–}$ and MeCN to form cis - and trans-[PtCl₂(MeCN)₂] was reported [4] preferentially to give the frans isomer at higher temperatures.

Reasoning that similar conditions might lead to the formation of trans- $[PtCl₂ L₂]$ with improved efficiency, we maintained an isotropic melt of 6 equiv. of 4-pentyl-4'-cyanobiphenyl (5CB, colourless) at 140 °C and added to it 1 equiv. of $PtCl₂$ with stirring. Only half an hour later the mixture was yellow and had solidified, consistent with the formation of $[PtCl₂(5CB)₂]$. Work-up of this solid showed that we had indeed obtained pure trans- $[PtCl₂(5CB)₂]$ in a recovered yield of about 70%. Further optimisation of this system showed that the same results could be obtained using only 3 mol equiv. of 5CB as solvent (i.e. only one mole excess) with a small reduction in yield. Given the cost of the ligand, this represents a more effective way of generating the complex. The trans geometry about the metal centre was confirmed by IR and NMR spectroscopy (see 'Experimental') and by comparison of the liquid crystal behaviour with an authentic sample whose *trans* geometry had been confirmed by single crystal X-ray analysis [2]. The same reaction was then carried out with the related ligands CCH5 (4-pentyl-trans,trans-bicyclohexyl-4'-carbonitrile) and PCH5 (4-pentyl-transcyclohexyl-4'-cyanophenyl) and again, pure *trans* complexes were obtained in comparable recovered yields.

Similarly, the reaction produced the *trans* isomer in around 50-60% recovered yield using mesogenic 4-alkyloxy-4'-stilbazoles [5] (n-OPhVPy) (II). This reaction is then a quick, convenient route into pure *trans* complexes of mesogenic N-donor ligands.

This reaction was then attempted using $PdCl₂$, $PtBr₂$ and $PtI₂$ using a reduced selection of ligands and a standard set of conditions as described in 'Experimental'. For $PdCl₂$, the reaction worked well for the alkyloxystilbazoles (yields \approx 75%), but for the cyanobiphenyls the recovered yields were much reduced (\approx 15%). This is due to the lability of these complexes in solution which becomes a problem during recrystallisation [6]. (Bailey *et al.* [6] describe the lability of $[PdCl₂(PhCN)₂]$.) Both PtBr₂ and PtI₂ gave moderate yields ($\approx 50\%$) of the *trans* complexes with the stilbazole ligand, but whereas $PtBr₂$ gave 50% of $[PtBr₂L₂]$ with cyanobiphenyl, PtI₂ appeared to give no reaction. Given the inertness of Pt-I bonds and the fact that a reaction of this type would have to break up an extended Pt-I-Pt network, we explain this lack of reaction in terms of the limited donor strength of organonitriles compared with the more basic pyridine derivatives.

To see if such a method was more generally applicable, the reaction was then carried out with

a wider variety of ligands, including chelating ligands for which a cis geometry was the only possibility.

Using triphenylphosphine, moderate **to** good yields were obtained with the full range of salts studied, except that for platinum the complexes were now cis (with the exception of $[PtI_2(PPh_1)_2]$ which was *trans*) as shown by ^{31}P NMR and IR spectroscopy and by the colour of the complexes. Triphenylphosphite gave unoptimised **yields** of the cis complex of only 14%. Reaction of $PtCl₂$ with 3 equiv. of the bidentate phosphine dppm did not stop at $[PtCl₂(dppm)]$ but continued to give $[Pt(dppm)₂]Cl₂$ in moderate yield $(\approx 50-60\%; 'J(Pt-P)(CDCl₃)$ $=$ 2025 Hz [7]). The same reaction using 1.5 equiv. (i.e. 3 phosphorus/Pt) gave a mixture of materials.

The use of other N-donor ligands in this reaction was disappointing. Thus, alkylamines and alkylanilines gave some trans product in very low yield $(z=5-10\%)$, while reaction with 2,2'-bipyridyl at 140 °C for 3 h gave $[PtCl₂(bipy)]$ in about 10% yield. No reaction was obtained for 1,10-phenanthroline under the same conditions.

Conclusions

For the mesogenic nitrogen-donor listed above, this reaction represents an efficient and quick route into pure *trans* complexes of Pt(II), while for other ligands the yields were less satisfactory; **in all cases, only one geometric isomer was obtained making purification much easier. Proper optimisation of the conditions of this reaction for different ligands will allow this route to be tailored to specific requirements.**

Acknowledgements

We acknowledge support from the Royal Society (D.W.B.) and the EC ERASMUS programme (B.D.) and J.R.M. thanks the SERC and Johnson Matthey for a CASE Studentship. Generous loans of platinum dihalides from Johnson Matthey are gratefully acknowledged. Anna Thornton is thanked for recording ³¹P NMR spectra.

References

- **D. W. Bruce, D. A. Dunmur, S. E. Hunt, R. Le Lagadec, P. M. Maitlis, J. R. Marsden, J. M. Stacey. M. A. Esteruelas and E. Sola, J. Muter.** *Chem., I* **(1991) 251; D. W. Bruce, D. A. Dunmur, M. R. Manterfield, P. M. Maitlis and R. Orr, J.** *Mater. Chem., 1* **(1991) 255; C. Bertram, D. W. Bruce, D. A. Dunmur, S. E.** Hunt, P. M. Maitlis and M. McCann, J. Chem. Soc., *Chem.* **Commun., (1991) 69.**
- **D. W. Bruce, E. Lalinde, P. Styring, D. A. Dunmur and P. M. Maitlis, J.** *Chem. Sot., Chem. Commun., (1985) 581;* **H. Adams, N. A. Bailey, D. W. Bruce, D. A. Dunmur, E. Lalinde, M. Marcos, C. Ridgway, A. J. Smith, P. Styring and P. M. Maitlis,** *Liq. Cryst.,* **2 (1987) 381.**
- **T. Uchiyama, Y. Toshiyasu, Y. Nakamura, T. Miwa and S. Kawaguchi,** *Bull. Chem. Sot. Jpn., 54 (1981)* **181.**
- 4 F. P. Fanizzi, F. P. Intini, L. Maresca and G. Natile, *J. Chem. Sot., Dalton Trans., (1990) 199.*
- **D. W. Bruce, D. A. Dunmur, E. Lalinde, P. M. Maiths and P. Styring,** *Liq. Cryst., 3 (1988) 385.*
- **D. W. Bruce, D. A. Dunmur, S. E. Hunt, P. M. Maitlis, R. Orr and P. Styring, unpublished results; P. M. Bailey, E. A. Kelley and P. M. Maitlis,** *J. Organomet. Chem., I44 (1978) C52.*
- **M. C. Grossel, R. P. Moulding, K. R. Seddon and F. J. Walker,** *J. Chem. Sot.,* **Dalton** *Trans.,* **(1987) 705.**