Disproportionation Reactions of the Dimeric Allyliron Compound $[\eta^3-C_3H_5Fe(CO)_3]_2$; Formation of Novel Cationic η^3 -Allylironcarbonyl Complexes

CELESTE A. GOULIN and MICHAEL C. BAIRD*

Department of Chemistry, Queen's University, Kingston, Ont., K7L 3N6 (Canada) (Received April 7, 1989; revised June 9, 1989)

Abstract

The metal-metal bonded dimer $[(\eta^3 \cdot C_3 H_5)Fe(CO)_3]_2$ disproportionates on treatment with a variety of tertiary phosphines, forming the ionic allyl iron complexes $[(\eta^3 \cdot C_3 H_5)Fe(CO)_2 L_2][(\eta^3 \cdot C_3 H_5)Fe(CO)_3]$ (L = PMe₃, PEt₃, PMe₂Ph, PMePh₂, PPh₃). The iron(0) anionic complex has been reported previously but not the labile, iron(II) cationic complexes, which are better synthesized by treatment of $(\eta^3 \cdot C_3 H_5)Fe(CO)_3Br$ with the tertiary phosphines.

Introduction

There is currently great interest in the chemistry of seventeen-electron organotransition metal compounds, which have often been synthesized via either photochemically induced homolysis of metalmetal bonded, eighteen-electron dimeric species [1] or electron transfer reactions of eighteen-electron monomers [2]. Most seventeen-electron complexes resemble organic radicals in that they are very unstable with respect to dimerization, and readily take part in a variety of ligand substitution and atom abstraction reactions [3].

Interestingly, the metal-metal bond of the compound $[(\eta^5 \cdot C_5 H_5)Cr(CO)_3]_2$ is very long (3.281(1) Å) [4] and weak (≈ 12.7 kcal mol⁻¹ [5], and it has been recently established that low but chemically significant concentrations of the monomeric, metalcentred radical $\{(\eta^5 \cdot C_5 H_5)Cr(CO)_3\}$ exist in solution in equilibrium with the dimer [6, 7]. Indeed, we have recently demonstrated that the solution chemistry of the dimer reflects the reactivity of the monomer, and a number of ligand substitution, disproportionation and atom abstraction reactions of $\{(\eta^5 \cdot C_5 H_5) \cdot Cr(CO)_3\}$, the related $\{(\eta^5 \cdot C_5 M_5)Cr(CO)_3\}$ and similar molybdenum species have been investigated [7-12].

Similar to the chromium system, the binuclear complex $[(\eta^3-C_3H_5)Fe(CO)_3]_2$ also exhibits a very

long metal-metal bond (3.138(3) Å) [13] and dissociates in solution to give the paramagnetic species { $(\eta^3 - C_3H_5)Fe(CO)_3$ }, as in eqn. (1) [14, 15].

$$[(\eta^3 - C_3 H_5)Fe(CO)_3]_2 \rightleftharpoons 2\{(\eta^3 - C_3 H_5)Fe(CO)_3\} (1)$$

As with the above-mentioned chromium system [10], the seventeen-electron monomer is very labile, and substition of carbon monoxide by various phosphines results in the formation of the substituted species $[(\eta^3-C_3H_5)Fe(CO)_2L]_n$ $(n = 1, 2; L = PPh_3, PPh_2Me, PPhMe_2, PMe_3)$ [14, 15]. The substituted compounds are much more extensively dissociated in solution than is the tricarbonyl dimer, and have been characterized by IR and ESR spectroscopy [14, 15].

In parallel with our investigations of the chromium and molybdenum radical systems [7-12], we have initiated an analogous study of the allyliron radicals. The chemistry of the substituted monomeric radical species has been little explored, and we hoped also to be able to carry out X-ray crystallographic and single crystal ESR spectroscopic studies on one or more compounds. Surprisingly, however, during attempts to duplicate previously reported syntheses [14, 15], it was found that reactions of the compound $[(\eta^3 - C_3 H_5)Fe(CO)_3]_2$ with tertiary phosphines L yielded not only the expected radicals, $\{(\eta^3 - C_3H_5)\}$ - $Fe(CO)_2L$, but also the products of disproportionation, $[(\eta^{3}-C_{3}H_{5})Fe(CO)_{2}L_{2}][(\eta^{3}-C_{3}H_{5})Fe(CO)_{3}].$ Neither the disproportionation reactions nor the complex cations have been previously described, either in this or any other context. We therefore report here details on both, and speculate on why the cationic complexes have not heretofore been synthesized.

Experimental

IR spectra were recorded on a Bruker IFS-85 FT IR spectrometer, ¹H, and ³¹P{¹H} NMR spectra on a Bruker AM 400 spectrometer; the IR, ¹H and ³¹P{¹H} spectra are reported in Tables 1-3, respectively. Chemical shifts are reported in δ (ppm) relative to internal TMS for ¹H, to external H₃PO₄ for

© Elsevier Sequoia/Printed in Switzerland

^{*}Author to whom correspondence should be addressed.

TABLE 1. IR data

Complex	$v(CO) (cm^{-1})$
$\left\{ (\eta^3 - C_3H_5) Fe(CO)_3 \right\}$	2043, 1963 (ether)
$\{(\eta^3 - C_3H_5)Fe(CO)_2(PMe_3)\}\$	1960, 1884 (ether) 1960, 1885 (ether)
$ \left\{ (\eta^3 \cdot C_3 H_5) Fe(CO)_2(PMePh_2) \right\} $ $ \left\{ (\eta^3 \cdot C_3 H_5) Fe(CO)_2(PMe_2Ph) \right\} $	1963, 1899 (ether) 1961, 1895 (ether)
$\left\{ (\eta^3 - C_3 H_5) Fe(CO)_2(PPh_3) \right\}$	1968, 1902 (ether)
$[(\eta^{3}-C_{3}H_{5})Fe(CO)_{2}(PEt_{3})_{2}]^{+}$ $[(\eta^{3}-C_{3}H_{5})Fe(CO)_{2}(PEt_{3})_{2}]^{+}$	2012, 1934 (Nujol) 2017, 1960 (Nujol)
$[(\eta^{3}-C_{3}H_{5})Fe(CO)_{2}(PMePh_{2})_{2}]^{+}$ $[(\eta^{3}-C_{3}H_{5})Fe(CO)_{2}(PMe_{2}Ph)_{2}]^{+}$	2015, 1959 (Nujol) 2020, 1967 (Nujol)
$\left[(\eta^3 - C_3 H_5) Fe(CO)_2 (PPh_3)_2\right]^+$	2009, 1958 (Nujol)

TABLE 2. ¹H NMR data for the complexes $[(\eta^3-C_3H_5)Fe-(CO)_2L_2]^+$ in CD₂Cl₂^a

Ligand L	δ ¹ H
PMePh ₂	δ1.61 (br q, H _a), $δ1.91$ (br, PMe), $δ2.13$ (br, PMe), $δ2.99$ (d, $J(H_cH_s) = 7$ Hz, H _s), $δ4.25$ (m, H _c), $δ5.83-7.62$ (m, Ph)
PMe ₂ Ph	δ1.67 (br q, H _a), $δ1.78$ (d, J(PH) = 9.5 Hz, PMe), δ2.04 (d, J(PH) = 9 Hz, PMe), $δ2.90$ (d, J(H _c H _s) = 7 Hz, H _s), $δ4.10$ (m, H _c), $δ5.84-7.70$ (m, Ph)
PMe ₃	δ1.33 (m, PMe), δ1.55 (m, PMe), δ1.67 (br q, H _a), δ3.29 (m, H _s), δ4.54 (m, H _c)
PEt ₃	$\delta 0.95 - 1.77$ (m, PEt), $\delta 2.30$, (br q, H _a), $\delta 3.13$ (br d, $J(H_aH_b) = 8$ Hz, H _s), $\delta 4.33$ (br m, H _c)

^aAs the tetraphenylborate salts.

TABLE 3. ³¹P NMR data for the complexes $[(\eta^3-C_3H_5)Fe-(CO)_2L_2]^+$ in CD₂Cl₂

Ligand L	δ ³¹ Ρ	J(PP) (Hz)
PMe ₃ ^a	33(d)	76.1
	16(d)	75.4
PEt ₃ ^a	53(d)	68.7
	42(d)	68.7
PEt3 ^b	53(d)	67.8
	42(d)	67.4
PMe ₂ Ph ^a	44(d)	79.3
	30(d)	79.3
PMe ₂ Ph ^b	38(d)	78.3
	24(d)	77.8
PMePh ₂ ^a	52(d)	75.5
	46(d)	75.0
PMePh ₂ ^b	49(d)	76.1
	43(d)	76.8

'Anion = [(η	³ -C ₃ H ₅ Fe(CO) ₃] .	^b Anion = BPh_4^- .
--------------	---	----------------------------------

-

TABLE 4. Mass spectral data for the complexes [(η^3 -C₃H₅)-Fe(CO)₂L₂]BPh₄

L, Complex ion	Mass/charge	Relative abundance (%)
PMe ₃		
$[(n^3 - C_2 H_z)Fe(CO)_2 L_2]^+$	305.1	33
$[Fe(CO)_{a}L_{a}]^{+}$	264.0	23
$[(n^3 - C_2 H_2)Fe(CO)_2 L]^+$	229.1	26
$[(n^3 - C_2 H_2)Fe(CO)_2]^+$	152.1	2 0 6
$[(n^3 - C_2 H_2)Fe(CO)]_2]^+$	277.1	4
$[(n^3 - C_3 H_2)FeL_2]^+$	2491	38
$[(n^3 - C_3 H_2)Fe(C_1)]^+$	219.1	50
$[(n^3 - C_3 H_2)FeI]^+$	173.0	31
$[(n^3 - C_3 H_2)Fe]^+$	175.0	51
[FeI] ⁺		
PEt ₃		
$[(\eta^{3}-C_{3}H_{5})Fe(CO)_{2}L_{2}]^{+}$	389.1	100
$[Fe(CO)_2L_2]^+$		
$[(\eta^{3}-C_{3}H_{5})Fe(CO)_{2}L]^{+}$	271.1	5
$[(\eta^3 - C_3 H_5) Fe(CO)_2]^+$	152.1	4
$[(\eta^{3}-C_{3}H_{5})Fe(CO)L_{2}]^{+}$	361.2	6
$[(\eta^{3}-C_{3}H_{5})FeL_{2}]^{+}$	333.2	45
$[(\eta^3 - C_3 H_5)Fe(CO)L]^+$		
$[(\eta^3 - C_3 H_5) FeL]^+$	215.1	40
$[(\eta^{3}-C_{3}H_{5})Fe]^{+}$		
[FeL] ⁺		
DI (- DI-		
rme ₂ rn		
$[(\eta^3 - C_3H_5)Fe(CO)_2L_2]^{\dagger}$	429.2	23
$[Fe(CO)_2L_2]^+$		
$[(\eta^3 - C_3 H_5)Fe(CO)_2L]^+$		
$[(\eta^3 - C_3 H_5)Fe(CO)_2]^+$		
$[(\eta^3 - C_3 H_5)Fe(CO)L_2]^{+}$	401.2	4
$[(\eta^3 - C_3 H_5) FeL_2]^{+}$	373.2	29
$[(\eta^3 - C_3 H_5)Fe(CO)L]^+$	263.1	12
$[(\eta^3 - C_3 H_5) FeL]^+$	235.1	15
$[(\eta^3-C_3H_5)Fe]^+$		
[FeL] ⁺	194.1	5
PMePha		
$[(n^3 - c_0 H_a) Fe(CO) - L_a]^+$	553 1	8
$[(\eta - \xi_{3115})^{+}(\xi_{3115}$	555.1	0
$[(n^3 - H_2) - F_2(C_1) - I_1^+$		
$[(n^3 - 2n^3) + 2n^2 $		
$[(n^3 - C_3H_2)Fe(CO)I_4]^+$		
$[(n^3 - C_3 + L_3)Fel_{-1}^+$	497 2	7
$[(n^3 - H_a) Fe(CO)]^{1+}$	325.1	11
$[(n^3 - 2n^2)Fel^{+}]^+$	297 1	11
$\left[\left(n^{3}-C_{2}H_{2}\right)Fe^{1+1}\right]$	277.1	11
[[[-0315]] [FeL]	256.0	11
[]		

³¹P. FAB mass spectral analyses were carried out at the McMaster University Regional Centre for Mass Spectrometry on a VG ZAB-E mass spectrometer; the data are reported in Table 4.

All reactions were carried out under oxygen-free nitrogen using dried, de-aerated solvents. The com-

pounds $(\eta^3 - C_3H_5)Fe(CO)_3Br$ and $[(\eta^3 - C_3H_5)Fe(CO)_3]_2$ were synthesized as in the literature [13]. The dimer was normally used *in situ*, having been synthesized from the bromo compound in ethyl ether or toluene, depending on the solvent desired for subsequent reactions.

Reactions of $[(\eta^3 - C_3H_5)Fe(CO)_3]_2$ with Tertiary Phosphines

As a general procedure, $[(\eta^3 \cdot C_3 H_5)Fe(CO)_3]_2$ was synthesized from $(\eta^3 \cdot C_3 H_5)Fe(CO)_3Br$ (0.30 g, 1.15 mmol) via zinc reduction in approximately 50 ml ether or toluene. On the addition of two equivalents of phosphine (2.30 mmol) in approximately 10 ml solvent to the solution of the dimer, the deep red solution changed to dark green, gas was evolved and, in the case of reactions carried out in ethyl ether, precipitates of the orange-yellow products, $[(\eta^3 \cdot C_3 H_5)Fe(CO)_2 L_2][(\eta^3 \cdot C_3 H_5)Fe (CO)_3]$ (L = PPh₃, PPh₂Me, PPhMe₂, PMe₃, PEt₃) formed. The solid disproportionation products were collected by filtration, washed with ether and hexanes, and dried *in vacuo*; yields were 28-36%.

As expected, the same cationic complexes $[(\eta^3 C_3H_5$)Fe(CO)₂L₂]⁺ can be synthesized by treating $(\eta^3-C_3H_5)Fe(CO)_3Br$ with the phosphines, and this route was utilized to synthesize samples for mass spectroscopic characterization. Typically, $(\eta^3-C_3H_5)$ -Fe(CO)₃Br (0.40 g, 1.5 mmol) was dissolved in approximately 20 ml ethanol. To this were added 2 equivalents of phosphine (3.0 mmol) in 10 ml ethanol, at which time gas evolution occurred and the colour of the solution changed from brown to orange. The solution was reduced to a volume of approximately 10 ml and a twofold excess of NaBPh₄ in 15 ml of ethanol was added. The volume was reduced again to approximately 15 ml and the resulting light yellow product, $[(\eta^3-C_3H_5)Fe(CO)_2L_2]BPh_4$, was collected on a frit, washed with ether and dried in vacuo. Yields were typically 60-85%.

Results and Discussion

Murdoch and Lucken have reported that $[(\eta^3 - C_3H_5)Fe(CO)_3]_2$ reacts with PPh₃ to form the substituted monomer $\{(\eta^3 - C_3H_5)Fe(CO)_2(PPh_3)\}$, although details of the reaction conditions are unclear [14]. Similarly, Muetterties *et al.* have utilized ESR spectroscopy to monitor the reactions of $[(\eta^3 - C_3H_5)Fe(CO)_3]_2$ with PMe₃, PMe₂Ph, PMePh₂ and PPh₃ in pentane and toluene, finding evidence for the formation of ESR-active species, presumably of the type $\{(\eta^3 - C_3H_5)Fe(CO)_2L\}$ since hyperfine coupling to a single phosphorus nucleus was observed [15]. On the basis of the temperature dependencies of the ESR signals and, apparently, assuming that all diamagnetic materials were present in solution as the diamagnetic, dimeric compounds $[(\eta^3 - C_3H_5)Fe(CO)_2H_5]$.

 $Fe(CO)_2L]_2$, thermodynamic data for the monomerdimer equilibria (eqn. (2)) were determined [15].

$$[(\eta^3 - C_3 H_5)Fe(CO)_2 L]_2 \rightleftharpoons 2\{(\eta^3 - C_3 H_5)Fe(CO)_2 L\}$$
(2)

While attempting to obtain pure, crystalline samples of the radicals $\{(\eta^3 - C_3 H_5)Fe(CO)_2 L\}$ in ethyl ether and toluene, however, we have found that the reactions are not adequately described by eqn. (2). In ether, with PPh₃, PPh₂Me, PPhMe₂, PMe₃, PEt₃, up to 30% of the starting material was converted to the products of disproportionation, $[(\eta^3 - C_3 H_5)Fe(CO)_2 L_2][(\eta^3 - C_3 H_5)Fe(CO)_3];$ in several cases, these ionic products precipitated from solution and could be isolated and characterized spectroscopically although none was sufficiently thermally stable to be obtained analytically pure. Thus, for $L = PMe_3$, PEt_3 , PMe_2Ph and $PMePh_2$, broad $\nu(CO)$ for the anion were observed at 1930 \pm 8 and 1860 \pm 10 cm⁻¹ (Nujol, methylene chloride, ethyl ether), at much lower frequencies than the ν (CO) of the cationic counterions (see below), but comparable to $\nu(CO)$ for the analogous sodium salt $(1910, 1855 \text{ cm}^{-1} \text{ in THF } [16])$. The ¹H NMR resonances of the complex anion were evident in the region $\delta 1-2$, generally upfield of the allylic ¹H resonances of the complex cations but obscured in large part by resonances of the tertiary phosphines and thus unassignable [16]*. Yields of the ionic products were much lower in toluene, but they were still observed in all cases as orange, crystalline precipitates on the walls of the reaction flasks.

Examination of the IR spectra of the reaction solutions in the $\nu(CO)$ region demonstrated for all five phosphines the presence of the monomeric radicals $\{(\eta^3 \cdot C_3 H_5)Fe(CO)_2 L\}$ (Table 1), identified by comparisons with literature data for the PPh₃ and P(n-Bu)₃ compounds [14]. In addition, for the reactions of PMe₃ and PEt₃ in ethyl ether and PMePh₂ in toluene, at least, weak ν (CO) for the disproportionation products were observed (Table 1), but in no case were there observed any $\nu(CO)$ which could be attributed to dimeric species of the type $[(\eta^3 - C_3 H_5)Fe(CO)_2 L]_2$. It seems unlikely that the $\nu(CO)$ for the dimers would totally overlap with and be obscured by $\nu(CO)$ for the monomers; certainly the tricarbonyl monomer and dimer, $\{(\eta^3 - C_3 H_5) Fe(CO)_3\}$ and $[(\eta^3 - C_3 H_5)Fe(CO)_3]_2,$ exhibit significantly different IR spectra in the ν (CO) region [14]. Similarly, the dimeric [(η^{5} - $C_5H_5Cr(CO)_3]_2$ and $[(\eta^5-C_5Me_5Cr(CO)_3]_2$ exhibit $\nu(CO)$ significantly different from the $\nu(CO)$ of the corresponding monomers [6, 11]. Although, as

^{*}The synthesis of Na $[\eta^3$ -C₃H₅Fe(CO)₃] outlined in this paper does not give pure product, as shown by the IR spectrum. However, the ¹H NMR spectrum of the product does exhibit multiplets in the region $\delta 1-2$, consistent with our assignments.

mentioned above, substituted dimeric complexes were assumed to be present in a thermodynamic study, monitored by ESR spectroscopy, of the chemistry represented by eqn. (2) [15], we note that confirmation of the putative dimeric species was not obtained via IR spectroscopy in this earlier work.

Although all attempts to obtain the new cationic complexes $[(\eta^3 \cdot C_3H_5)Fe(CO)_2L_2]^+$ (L = PMe₃, PMe₂Ph, PMePh₂, PPh₃) analytically pure (as the $\eta^3 \cdot C_3H_5)Fe(CO)_3^-$ or BPh₄⁻ salts) failed because of their general thermal lability (all decomposed in solution to complexes of the types Fe(CO)₄L and Fe(CO)₃L₂), the formulations have been unambiguously established via spectroscopic techniques. Thus FAB mass spectra of the tetraphenylborate salts, $[(\eta^3 \cdot C_3H_5)Fe(CO)_2L_2]BPh_4$, exhibited peaks for the parent ions of the cations $[(\eta^3 \cdot C_3H_5)Fe (CO)_2L_2]^+$, as well as peaks for the species $[Fe(CO)_2^-L_2]^+$, $[(\eta^3 \cdot C_3H_5)Fe(CO)_2L_1^+, [(\eta^3 \cdot C_3H_5)Fe(CO)_2]^+$, $[(\eta^3 \cdot C_3H_5)Fe(CO)L_2]^+$, $[(\eta^3 \cdot C_3H_5)FeL_2]^+$, $[(\eta^3 \cdot C_3H_5)Fe]^+$ and $[FeL]^+$ (Table 4).

By analogy with isoelectronic manganese complexes of the general formula $(\eta^3 \cdot C_3 H_s)Mn(CO)_2 L_2$ [17, 18], the structures of the new complex cations should be as shown in A.

 $(M = Fe; L = PMe_3, PEt_3, PMe_2Ph, PMePh_2, PPh_3)$

Two $\nu(CO)$ are observed in the IR spectra of each of the cationic complexes, implying cis dispositions of carbonyl groups (Table 1), but detailed interpretations of the ¹H NMR spectra (Table 2) of the new cationic complexes were difficult because of the above-mentioned thermal lability. However, the allyl protons exhibit chemical shifts comparable with those of the complexes $(\eta^3 \cdot C_3 H_5)Fe(CO)_3 X$ (X = Cl, Br, I) [19-21], with the resonances of the centre hydrogens (H_c) appearing as unresolved multiplets and those of the syn hydrogens (H_s) appearing as doublets with $J(HH) \approx 7$ Hz. The resonances of the anti hydrogens (Ha), on the other hand are not the simple doublets anticipated on the basis of the spectra of the compounds $(\eta^3 - C_3 H_5)$ - $Fe(CO)_3X$ [19-21], but are broadened quartets, presumably because of coupling to ³¹P. The appearances of the allyl resonances are in fact very similar to those of the above-mentioned manganese analogues [17, 18], providing further evidence for structures as in A. There is, however, no evidence for the rotational isomerization exhibited by the complexes $(\eta^3 - C_3 H_5)Fe(CO)_3 X [19-21]$.

Interestingly, the ¹H NMR spectra of the PMe₃, PMe₂Ph and PMePh₂ complexes each exhibit two methyl resonances, indicating that the pairs of phosphines are non-equivalent, compatible with A. Similarly, the ${}^{31}P{}^{1}H$ NMR spectra (Table 3) of the cationic complexes exhibit AB quartets with chemical shift differences and ${}^{2}J(PP)$ of approximately 6-17 ppm and 67-80 Hz, respectively. The chemical shift differences are thus small but consonant with the rather subtle origin of the nonequivalence of the phosphorus environments. The observed values of ${}^{2}J(PP)$ are compatible with trans dispositions of the phosphine ligands in the series of complexes, but we note that cis couplings could be of comparable magnitude [22, 23]. It was unfortunately not possible with most complexes to obtain useful ¹³C NMR spectra because of low solubilities and/or decomposition during spectral accumulation.

Disproportionation reactions of metal-metal bonded compounds and metal-centred radicals have many precedents, and are believed in many cases to involve nineteen-electron intermediates or transition states [24]. Thus the reactions reported here presumably occur via dissociation of the dimer $[(\eta^3-C_3H_5)Fe(CO)_3]_2$ (as in eqn. (1)), followed in turn by reaction of the monomeric radical with the tertiary phosphines L and electron transfer (eqns. (3)-(5)).

$$[(\eta^3 - C_3 H_5) Fe(CO)_3]_2 \longrightarrow 2\{(\eta^3 - C_3 H_5) Fe(CO)_3\} (1)$$

$$[(\eta^3 \cdot C_3 H_5)Fe(CO)_2 L_2]^+$$
(5)

It is also pertinent to ask why this hardly unusual class of cationic allyliron complexes has not been prepared previously, via either the type of disproportionation reactions reported here, or via substitution reactions of complexes of the types $(\eta^3$ - $C_{3}H_{5}Fe(CO)_{3}X$ or $[(\eta^{3}-C_{3}H_{5})Fe(CO)_{4}]X$ (X = anion) [19-21, 25]. It would seem that disproportionation reactions have not been previously noted because earlier studies have been carried out in nonpolar solvents [14, 15] in which, as mentioned above, the ionic products $[(\eta^3 \cdot C_3H_5)Fe(CO)_2L_2][(\eta^3 \cdot C_3H_5) \cdot$ $Fe(CO)_3$] are formed in very low yields. On the other hand, with respect to substitution reactions of allyl complexes of formally iron(II), it seems that a complicating factor is the proclivity of these species to undergo nucleophilic attack at the coordinated allyl group, yielding allylphosphonium salts and complexes of iron(0) [19, 25, 26]. Thus reaction of $(\eta^3 \cdot C_3 H_5)$ Fe(CO)₃I with an equimolar amount of PPh₃ in THF results in the formation of [P(C₃H₅)-Ph₃]I (31%) and $(\eta^3 \cdot C_3 H_5)$ Fe(CO)₂(PPh₃)I (6%), while reaction of a series of complexes of the type $[(\eta^3$ -substituted allyl)Fe(CO)₄]⁺ with nitrogen and phosphorus donors results in the formation of even higher yields of allylammonium and -phosphonium salts [27].

Acknowledgements

We thank the Natural Sciences and Engineering Research Council, Queen's University and Imperial Oil Limited for financial support.

References

- 1 T. J. Meyer and J. V. Caspar, Chem. Rev., 85 (1985) 187.
- 2 N. G. Connelly and W. E. Geiger, Adv. Organomet. Chem., 23 (1984) 1.
- 3 M. C. Baird, Chem. Rev., 88 (1988) 1217.
- 4 R. D. Adams, D. E. Collins and F. A. Cotton, J. Am. Chem. Soc., 96 (1974) 749.
- 5 J. T. Landrum and C. D. Hoff, J. Organomet. Chem., 282 (1985) 215.
- 6 S. J. McLain, J. Chem. Soc., 110 (1988) 643.
- 7 N. A. Cooley, K. A. Watson, S. Fortier and M. C. Baird, Organometallics, 5 (1986) 2563.
- 8 J. F. Morton, K. F. Preston, N. A. Cooley, M. C. Baird, P. J. Krusic and S. J. McLain, *J. Chem. Soc.*, *Faraday Trans. 1*, 83 (1987) 3535.
- 9 N. A. Cooley, M. C. Baird, J. F. Morton and K. F. Preston, J. Magn. Reson., 76 (1988) 325.

- 10 N. A. Cooley, P. T. F. MacConnachie and M. C. Baird, Polyhedron, 7 (1988) 1965.
- 11 T. J. Jaeger and M. C. Baird, Organometallics, 7 (1988) 2074.
- 12 P. R. Drake and M. C. Baird, J. Organomet. Chem., 363 (1989) 131.
- 13 C. F. Putnick, J. J. Welter, G. D. Stucky, M. J. D'Aniello, B. A. Sosinsky, J. F. Kirner and E. L. Muetterties, J. Am. Chem. Soc., 100 (1978) 4107.
- 14 H. D. Murdoch and E. A. C. Lucken, Helv. Chem. Acta, 47 (1964) 1517.
- 15 E. L. Muetterties, B. A. Sosinsky and K. I. Zamaraev, J. Am. Chem. Soc., 97 (1975) 5299.
- 16 S. P. Gubin and L. I. Denisovich, J. Organomet. Chem., 15 (1968) 471.
- 17 L. S. Stuhl and E. L. Muetterties, Inorg. Chem., 17 (1978) 2148.
- 18 B. J. Brisdon, D. A. Edwards, J. W. White and M. G. B. Drew, J. Chem. Soc., Dalton Trans., (1980) 2129.
- 19 I. Von Wilucki, in A. Slawisch (ed.), Gmelin Handbuch der Anorganische Chemie, Eisen-Organische Verbindungen, Teil B5, Springer, Berlin, 8th edn., 1978, pp. 32-67, 82-86.
- 20 A. N. Nesmeyanov, Y. A. Ustynyuk, I. I. Kritskaya and G. A. Shchembelov, J. Organomet. Chem., 14 (1968) 395.
- 21 J. D. Cotton, D. Doddrell, R. L. Heazlewood and W. Kitching, Aust. J. Chem., 22 (1969) 1785.
- 22 P. S. Pregosin and R. W. Kunz, Basic Principles and Progress in NMR, Vol. 16, Springer, Berlin, 1979, pp. 115-117.
- 23 M. Pankowski, W. Chodkiewicz and M.-P. Simonnin, Inorg. Chem., 24 (1985) 533.
- 24 D. Astruc, Chem. Rev., 88 (1988) 1189.
- 25 I. Von Wilucki, in A. Slawisch (ed.), Gmelin Handbuch der Anorganische Chemie, Eisen-Organische Verbindungen, Teil B5, Springer, Berlin, 8th edn., 1978, pp. 97-106.
- 26 A. N. Nesmeyanov and I. I. Kritskaya, J. Organomet. Chem., 14 (1968) 387.
- 27 T. H. Whitesides, R. W. Arhart and R. W. Slaven, J. Am. Chem. Soc., 95 (1973) 5792.