Chemical and Structural Aspects of Cyclopentadienyl Uranium(IV) Tetrahydroborato Complexes

P. ZANELLA, N. BRIANESE, U. CASELLATO, F. OSSOLA, M. PORCHIA, G. ROSSETTO

Istituto di Chimica e Tecnologia dei Radioelementi del CNR, Corso Stati Uniti 4, 35100 Padua, Italy

and R. GRAZIANI

Dipartimento di Chimica Inorganica Metallorganica e Analitica, Università di Padova, Via Loredan 4, 35100 Padua, Italy (Received July 28, 1987)

Abstract

Several new or partially described complexes of uranium(IV) of the series $Cp_{4-n}U(BH_4)_n$ [Cp = η^5 -C₅H₅, η^5 -C₅H₄CH₃ or η^5 -C₅H₄Si(CH₃)₃] are reported, mainly in order to systematically compare their physical, chemical and spectroscopic properties. X-ray data of the crystal structure of Cp₃UBH₄ are also reported.

Introduction

The coordinating ability of the boron hydride ligands to the transition metal ions and particularly the possibility of the BH₄ group to form mono-, bi- and tridentate species have been widely investigated during the last two decades [1]. The mode of ligation seems mainly connected both with the metal radius and with the steric demands of other coordinated ligands present in the complex. Thus the large actinide ions generally favour trihapto mononuclear organometallic species, while bidentate structures have been observed, e.g. for crowded polymeric hydride-bridged species [2]. Since a close interconnection may exist between the structural features and the physicochemical properties of these compounds, we undertook investigations on several uranium(IV) and thorium(IV) complexes of the series $Cp_{4-n}M^{f}(BH_{4})_{n}$ [M^f = U^{IV} and Th^{IV}; n = 1, 2, 3; Cp = η^{5} -C₅H₅, η^{5} -C₅H₄CH₃ and η^{5} -C₅H₄Si(CH₃)₃]. Here we describe their syntheses as well as their chemical reactivities and some spectroscopic properties. In addition, data on the crystal structure of Cp₃UBH₄ are presented.

Experimental

All the operations were carried out in nitrogenfilled glove boxes. Solvents were dried and purified according to described procedures [3]. $Cp^{Me}H$ $(Cp^{Me} = C_5H_4CH_3)$ was distilled before use. LiBH₄ (Janssen Chimica) was purified by crystallization from diethyl ether and NaBH₄ (Janssen Chimica) from isopropylamine; the purity of both was checked by titration with H₂SO₄. Samples of UCl₄, ThCl₄-TlCp (Cp = C₅H₅), TlCp^{Me}, Cp₂U(BH₄)₂, Cp₃UBH₄ and Cp₃UCl were prepared by published procedures.

¹H, ¹³C and ¹¹B NMR spectra were recorded on a Varian FT80A spectrophotometer. Chemical shifts for ¹H and ¹³C refer to TMS, calculated with respect to C_6D_5H as internal standard, and for ¹¹B to $BF_3 \cdot OEt_2$ as external standard. They are collected in Table III. Infrared spectra (4000–400 cm⁻¹) were recorded with a Perkin-Elmer 580B apparatus using Nujol mulls (except for $Cp_2^{Si}U(BH_4)_2$ which was used neat) sandwiched between KBr or CsI plates in sealed air-tight σ -holders. Near IR–Vis spectra were recorded with a Cary 17D spectrometer.

Elemental analyses were performed by Dornis und Kolbe mikroanalytisches Laboratorium, Mulheim (F.R.G.).

X-ray fluorescence analyses were carried out as described in ref. 4. Mass spectra were obtained with a ZAB 2F instrument (EI 70eV) (VG Organic, Ltd.).

Syntheses of Cp^{Si}H and TlCp^{Si}

To a diethyl ether suspension of KCp (10 mmol) prepared *in situ* from K and CpH, 10 mmol of $(CH_3)_3SiCl$ were added and the mixture was stirred for about 10 h, after which all volatiles (mainly Et_2O and $Cp^{Si}H$) were fractionally distilled. $Cp^{Si}H$ (40%) was collected as a brown-yellow oily liquid at 140–143 °C (1 atm). TlCp^{Si} was obtained as an insoluble white-silver solid by reacting a n-hexane solution of $Cp^{Si}H$ and TlOEt. It was separated by filtration.

Synthesis of $Cp_2^{Me}U(BH_4)_2$

To 570 mg of UCl₄ (1.5 mmol) in 30 ml of Et_2O , 100 mg of LiBH₄ (4.5 mmol) was added at room

temperature. After stirring for about 20 h, 850 mg of TlCp^{Me} (3 mmol) were added to the solution. Two hours later the solution was filtered from TlCl, LiCl and the excess of LiBH₄, then Et₂O was removed under vacuum. The residue was transferred under nitrogen in a sublimer and sublimated at 0.2 torr, 55 °C. The sublimation continued for 2 days, giving a brown-yellow product. Its uranium content was determined by gravimetric analysis and X-ray fluorescence: *Anal.* Calc. for C₁₂H₂₂UB₂: U, 55.9. Found: U, 56.3%. ¹H NMR: 9.8 (s, 6H, CH₃), 15.83 (s, 4H), -12.76 (s, 4H); -21.15 (q, 8H, BH₄). ¹¹B NMR: 86.9 (quintet). IR (Nujol mull, CsI): 3090m, 2480s, 2180m, 2110m, 1170m, 1010m, 930m, 890m, 790s, 670m.

Synthesis of $Cp_2^{Si}U(BH_4)_2$

UCl₄ (760 mg, 2 mmol) and LiBH₄ (100 mg, 4.5 mmol) were stirred in Et₂O for 20 h, then TlCp^{Si} (682 mg, 2 mmol) was added and stirring was continued for an additional 20 h. Et₂O was stripped away and the residue was washed with hexane and filtered. The collected fractions gave, after removal of n-hexane, Cp₂^{Si}U(BH₄)₂ (50–60% yield) as a red oily liquid. Gravimetric analysis and X-ray fluorescence gave: U, 44.2. Calc. for C₁₆H₃₄UB₂Si: U, 43.9%. ¹H NMR: 0.0 (s, 18H, CH₃), 18.38 (s, 4H), -16.52 (s, 4H), 18.07 (q, 8H, BH₄) ¹¹B: 92.1 (quintet). IR (neat): 3090w, 2940s, 2890sh, 2850sh, 2485s, 2200m, 2120m, 1440m, 1400m, 1370m, 1310m, 1250s, 1170s, 1040s, 1010m, 900s, 830s, 785s, 750s, 680m, 630s, 615sh.

Synthesis of $Cp_2 Th(BH_4)_2$

ThCl₄ (1106 mg, 2 mmol) was suspended in 20 ml of DME and 154 mg of NaBH₄ (4 mmol) were added. After stirring for 3 days at room temperature, 1076 mg of TlCp (4 mmol) were added to the mixture. The solution was stirred for 24 h and then TlCl and NaCl were filtered off. DME was removed by prolonged pumping and the white residue, after washing several times with n-hexane, was analysed. Complete purification was achieved by slow sublimation (low yield, 10%) at 10^{-3} Torr and 150 °C. *Anal.* Calc. for C₁₀H₁₈ThB₂: C, 30.61; H, 3.0. Found: C, 30.53; H, 3.10%. Due to the low solubility in C₆D₆ we were not able to obtain good ¹H NMR spectra. IR (Nujol mull, KBr): 2480s, 2200m, 2140m, 1080m, 1010m, 790s.

Syntheses of $CpU(BH_4)_3$ and $Cp^{Me}U(BH_4)_3$

CpU(BH₄)₃ was prepared by an alternative route with respect to ref. 5. In particular UCl₄ (700 mg, 2 mmol) and NaBH₄ (300 mg, 8 mmol) were stirred in Et₂O at room temperature for 24 h, then TlCp (540 mg, 2 mmol) was added. After 2 days stirring the ¹H NMR spectrum revealed the presence in solution of CpU(BH₄)₃ (>80%) and Cp₂U(BH₄)₂ (<20%). The solution was filtered, Et_2O was removed and $CpU(BH_4)_3$ purified by sublimation. The amount of $Cp_2U(BH_4)_2$ varied on varying the excess of NaBH₄ used and its presence was probably due to disproportionation of $CpU(BH_4)_3$ into Cp_2 - $U(BH_4)_2$ and $U(BH_4)_4$, favoured by the coordinating ability of Et_2O [5]. ¹¹B NMR: 129 (br). In the same way we prepared $Cp^{Me}U(BH_4)_3$ but we did not succeed in purifying it from the $Cp_2^{Me}U(BH_4)_2$ formed in the course of the reaction. $Cp^{Me}U(BH_4)_3$ was identified in solution on the basis of ¹H NMR signals: 16.5 (s, 2H), 41.8 (q, 12H), -2.3 (s, 3H), 7.3 (s, 2H).

Reactivity

Reactions of $Cp_2U(BH_4)_2$ and Cp_3UBH_4 with various reagents (alcohols, acetone, acetylacetone, HSnPh₃) have been studied by adding the reagent to an Et₂O solution of the tetrahydroborate complex at room temperature. The products were identified from the ¹H NMR spectrum of a C₆D₅H solution of the residue obtained after removing Et₂O. Generally both the uranium compounds and the reagent were mixed in approximate stoichiometric ratios, except for CH₃COCH₃ and Cp₂U(BH₄)₂, in which different behaviour was observed depending on the molar ratio of the reagents, as follows:

(1) $Cp_2 U(BH_4)_2 + CH_3 COCH_3$, molar ratio 1:1

To Cp₂U(BH₄)₂ (1 mmol) in Et₂O, 1 mmol of CH₃COCH₃ was added dropwise. The solution gradually turned green and after 1 h the ¹H NMR spectrum revealed the presence in solution of Cp₂-U(OPr¹)BH₄ as the main product, together with a small amount of Cp₃U(OPr¹) and Cp₃UBH₄. Cp₂-U(OPr¹)BH₄ was identified on the basis of ¹H NMR signals but we never succeeded in isolating it, either by extraction in different solvents or by sublimation (we obtained only Cp₃UOPr¹).

(2) $Cp_2U(BH_4)_2 + CH_3COCH_3$, molar ratio 1:2

Two mmol of CH_3COCH_3 were added to Cp_2 -U(BH₄)₂ (1 mmol) in n-hexane at room temperature. After 10 min the ¹H NMR spectrum showed that the reaction was complete: $Cp_2U(OPr^i)_2$ [6] was present in solution together with traces of $Cp_3U(OPr^i)$.

(3) $Cp_2U(BH_4)_2 + CH_3COCH_3$, molar ratio 1:3 When an excess of CH_3COCH_3 was added to $Cp_2U(BH_4)_2$ in Et_2O , the main product detectable by ¹H NMR was Cp_3UOPr^i together with Cp_3UBH_4 .

Other results are summarized in Scheme 1.

X-ray Data

Crystals of Cp_3UBH_4 were obtained by crystallization from toluene. Cell parameters were determined from a least-squares refinement of the setting angles of 25 medium angle reflexions carefully centered on a Philips four-circle diffractometer with Mo K α radiation.

Results and Discussion

The cyclopentadienyl tetrahydroborate complexes can be easily prepared by stepwise replacement of the chloride atoms of UCl_4 (or ThCl₄) with the Cp and BH₄ groups, *i.e.* by the reaction sequences:

 $UCl_{4} + (4 - n)TlCp \longrightarrow UCp_{4-n}Cl_{n} + (4 - n)TlCl$ $UCp_{4-n}Cl_{n} + nMBH_{4} \longrightarrow UCp_{4-n}(BH_{4})_{n} + nMCl$ (where M = Li, Na)

Tetrahydrofuran (THF), dimethoxyethane (DME) and diethyl ether have been used as the solvents, but for the synthesis of $CpU(BH_4)_3$ non-coordinating solvents had to be employed as in THF (and partially in Et₂O) disproportionation occurs as follows:

$$2CpU(BH_4)_3 \cdot S \longrightarrow Cp_2U(BH_4)_2 + U(BH_4)_4 \cdot S$$

(S = THF, Et₂O)

The yields are usually very high and in any case pure products can be easily obtained by sublimation; in fact the prepared compounds are very volatile; the volatility increases with the number of BH_4 groups present in the molecule and with the crowding of the substituted Cp ligands, *i.e.* following the series:

 $Cp_3UBH_4 < Cp_2U(BH_4)_2 < CpU(BH_4)_3$ and $Cp_2U(BH_4)_2 < Cp_2^{Me}U(BH_4)_2 < Cp_2^{Si}U(BH_4)_2$

as reported in Table I.

 $Cp_2U(BH_4)_2$ can be quantitatively prepared also by reaction of $Cp_2U(NEt_2)_2$ [7] with $BH_3 \cdot SMe_2$, probably by the same mechanism as described elsewhere [8]. $Cp_2Th(BH_4)_2$ is far less volatile than uranium compounds and it is more difficult to obtain free from coordinated THF or DME.

Spectroscopic Properties

Visible and infrared spectra

The infrared spectra of the prepared compounds show the bands typical of the Cp and BH₄ groups, thus providing useful information on their coordination mode. In fact, those at 1000–1020 indicate η^{5} -coordination of the cyclopentadienyl ligands, while absorptions at 2450–2600, 2100–2200 and 1150–1250 cm⁻¹ can be ascribed to a trihapto ligation mode of the BH₄ groups to the uranium atom, following the criteria established by Marks and generally confirmed by structural determinations [1, 2]. The substituents R (CH₃, (CH₃)₃Si) of the Cp group slightly modify only the position but not the shape of the absorptions typical of the BH₄ groups; of course their spectra present additional bands due to the R groups themselves.

The $Cp_2Th(BH_4)_2$ IR absorption bands are identical to those of its uranium analogues, indicating a striking similarity both in structure and bonding; however, unlike the corresponding uranium compound, it is usually obtained coordinated to THF and DME (as indicated by IR bands appearing in the range 1050–1150 cm⁻¹) from which it can be easily liberated by prolonged vacuum pumping or sublimation. Here probably the larger ion size of Th⁴⁺ with respect to that of U⁴⁺ plays a role in allowing the coordination of one extra ligand.

 $Cp_2U(BH_4)_2$, $Cp_2^{Me}U(BH_4)_2$ and $Cp_2^{Si}U(BH_4)_2$ show very similar solvent independent spectra in the visible-near-IR region (Fig. 1), indicating similar coordination around the central metal (for the solid $Cp_2U(BH_4)_2$ the structure corresponds to a distorted tetrahedron formed by the vertices of the Cp group centroids and the boron atoms [9]). These tetrahydroborato complexes display very narrow absorption bands and their spectra look rather different from those of $Cp_2U(NEt_2)_2$ which are very broad. Such behaviour may reflect different structural conformations in solution in that tetra-

TABLE I. Physical Properties of Different Tetrahydroborate Complexes

Compound	Appearance	Sublimation condition T (°C) (P (torr))	Solubility ^a (27 °C)			Reference
			n-hexane	benzene toluene	THF-DME	
CpU(BH ₄) ₂	vellow-orange solid	$20(10^{-2})$	ss	+	dec	5
CpaU(BH ₄)a	red solid	$60 - 100 (10^{-2} - 10^{-3})$	_	+	++	8
$Cn_2^{Me}U(BH_4)_2$	red solid	$50-60(10^{-2}-10^{-3})$	SS	+	++	This work
$Cn_{a}Si_{U}(BH_{a})_{a}$	red oily liquid		+	++	++	This work
$Cp_2 U(BH_4)$	red solid	$170(10^{-4})$	_	+	+	13
Cn ^{Me} UBH	reddish solid	$120 - 130(10^{-4})$	_	+	+	14
$Cp_2Th(BH_4)_2$	white solid	150-200 (10-4)	-	SS	+	This work

a - insoluble; ss slightly soluble; + soluble; ++ very soluble.

Fig. 1. Vis-near-IR spectra of: (a) $Cp_2U(BH_4)_2$ in toluene; (b) $Cp_2^{Me}U(BH_4)_2$ in toluene; (c) $Cp_2U(NEt_2)_2$ [7] in n-hexane.

hydroborate complexes probably are monomeric, while $Cp_2U(NEt_2)_2$ may form oligomeric nitrogenbridged species.

Mass spectra

In Table II the main peaks of the mass spectra of $Cp_2U(BH_4)_2$ and $Cp_2^{Si}U(BH_4)_2$ are collected. It is noteworthy that ions containing BH₄ groups are abundantly present in both fragmentation patterns and for $Cp_2^{Si}U(BH_4)_2$ the ion $(Cp_2^{Si}UBH_4)^+$ is the most abundant one, thus indicating that the U-BH₄ bond is rather robust. Easy loss of CH₃ groups from the $C_5H_4Si(CH_3)_3$ moiety took place;

TABLE II.	Outline	of the	Most	Significant	Fragments	in th
Mass Spect	ra of (a)	Cp ₂ U((BH4)2	and (b) Cp	2 ^{Si} U(BH ₄)2	

m/e	Irel	Fragment
(a) Cp ₂ (UB	H ₄) ₂	
398	20	M ⁺
383	15	$(M - BH_4)^+$
368	100	$(M - 2BH_4)^+$
318	60	$(M - BH_4 - Cp)^*$
303	43	(CpU) ⁺
66	60	(CpH) ⁺
65	70	(Cp) +
39	30	(C ₃ H ₃) ⁺
(b) ((CH ₃);	3SiC5H4)2U(BH4)	2
542	20	М+
527	100	$(M - BH_4)^+$
497	30	$(M - 2BH_4 - CH_3)^+$
482	40	$(M - 2BH_4 - 2CH_3)^+$
452	55	$(M - 2BH_4 - 4(CH_3))^+$
439	65	$(M - 2BH_4 - Si(CH_3)_3)^+$
138	50	((CH ₃) ₃ SiC ₅ H ₅) ⁺
123	80	$((CH_3)_2SiC_5H_5)^+$
73	30	((CH ₃) ₃ Si) ⁺

in fact, no appreciable amount of $(Cp_2^{Si}U)^*$ was detected but only $[(Cp_2^{Si}U) - CH_3]^*$ and species obtained by subsequent loss of CH₃.

NMR spectra

The chemical shifts (Table III) are typical of uranium(IV) paramagnetic organometallic complexes. Interestingly, a general trend to an upfield shift for the signals of all nuclei studied (¹H, ¹¹B, ¹³C) is observed by progressive replacement of BH₄ groups with cyclopentadienyl groups. The presence of the methyl or trimethylsilyl substituents in the cyclopentadienyl groups induces the splitting of the ring singlet into α and β proton signals in opposite sides with respect to the signal of the protons of the unsubstituted Cp ring. The methyl Cp derivatives show ¹¹B as well as ¹H_{B-H} upfield signals compared to the unsubstituted Cp complexes; the replacement of the hydrogen atoms to boron by different groups (Me, Et, Ph, BBN (=q-borabicyclo(3,3,1)nonane)) sig-nificantly affects the signals of the ¹¹B spectra, while the signals of both Cp and remaining hydroborate protons are practically unaltered. Clearly, structural and/or electronic parameters are responsible for this behaviour but their exact influence is still under investigation.

Crystal Data of $Cp_3 UBH_4(C_{15}H_{19}BU, M = 447.9)$

Red-brown crystals, orthorhombic, space group *Pnma*, with a = 14.773(9), b = 8.226(4), c = 12.183-(6) Å, V = 1480.5 Å³, $D_c = 2.01$ g cm⁻³ for Z = 4.

The compound has molecular symmetry C_{3v} with the U and B atoms lying on the crystallographic

TABLE III. List of Room Temperature ¹H, ¹¹B and ¹³C NMR Shifts for Various $U(C_5H_4R)_x(H_{4-n}BR_n)_{4-x}$ (¹H and ¹³C Shifts Are Referred to TMS, ¹¹B to BF₃*OEt₂)

Formula	¹ H of ring protons of C ₅ H ₄ R	¹ H of H _{4-n} BR _n	¹ H of R/R _n	uв	¹³ C
UCp4 ^a	-12.73s				<i>ca.</i> 165
UCp ₃ BH ₄ ^a	-6.54s	-60q		64.26quint	195
UCp ₃ H ₃ BMe ^b	-6.80s	-65.4q	-17.4q	96.7b	
UCp ₃ H ₃ BEt ^a	-6.58s	-66.4q	-17.4q; -10.7t	87.8q	
UCp ₃ H ₃ BPh ^a	-6.33s	- 76.8q	-2.14t; -1.90t; 8.22q	92.5q	
UCp3 ^{Me} BH4 ^c	7.58s; -22.94s	-62.6q	2.57s	53.95quint	
UCp ₃ HBBN ^e	- 7.09s	62.2b	-6.06b; -9.03q;	-55.16b	
			-43.09b; -10.41b;		
			-13.70b		
UCp ₂ (BH ₄) ₂ ^a	5.30s	– 19.34q		90.78quint	310
UCp ₂ ^{Me} (BH ₄) ₂ ^a	15.83s; -12.76s	-21.15q	9.8s	86.9quint	
UCp ₂ ^{Si} (BH ₄) ₂ ^a	18.38s; -16.52s	-18.07q	0.0s	92.1quint	377, 326, 294, 3.83
UCp(BH ₄) ₃ d	14.9bs	53.3q		129.1bs	ca. 370
UCp ^{Me} (BH ₄) ₃ ^c	16.5s; 7.3s	41.8q	- 2.3s	125bs	
U(BH ₄) ₄ ^f		130g		90.1quint	
U(H ₃ BMe) ₄ ^g		156.4bs	15.8s		

^aRef. 15. ^bRef. 7. ^cThis work. ^dRef. 5. ^eRef. 16. ^fRef. 17. ^gRef. 18.

mirror. The U atom is tetrahedrally surrounded by the four ligand groups (three Cp and one BH₄) and the U-B distance [10] of 2.48 Å, which compares well with other U-B distances, strongly supports the hypothesis of a trihapto hydride bridge bonding although the H atoms could not be located, in agreement with the conclusion gathered from the infrared absorption [1]. Due to molecular disorder the cyclopentadienyl carbon atoms could not be exactly localized either; they are statistically distributed over two or more positions. The actual R factor, based on 1016 (independently) observed reflections, has been calculated by tentatively introducing the carbon atoms with occupancy factors of 0.5 and figures up at 5.6%. In this manner the $U-C_{Cp}$ distances have been found in the range 2.75-2.83 Å, as usually found for this class of molecules. Thus coordination geometry of Cp₃UBH₄ corresponds to the monomeric tetrahedral Cp₃UX [11] molecules as illustrated in Fig. 2, even though a more complete characterization could be achieved by low temperature or neutron diffraction studies.

Reactivity

Several reactivity tests have been performed with Cp_3UBH_4 and $Cp_2U(BH_4)_2$. The results for Cp_3 -UBH₄ are collected in Scheme 1.

It has been observed that this tetrahydroborato complex reacts with alcohols, acetone, acetylacetone and HSnPh₃, leading to the final substitution of the BH₄ group with alkoxide, isopropoxide, acetylacetonato and triphenylstannide groups, respectively. The interesting compound $Cp_2U(BH_4)(OCH(CH_3)_2)$

Scheme 1.

has been detected by ¹H NMR in the reaction of $Cp_2U(BH_4)_2$ and CH_3COCH_3 .

A small excess of the reagents with respect to the uranium compounds did not attack the U–Cp bonds; moreover CO, pyridine, CH_3CN and isonitriles seem to be unreactive.

In conclusion, the described mixed ligand (cyclopentadienyl and tetrahydroborato) uranium complexes form a stable class and do not generally undergo disproportionation phenomena and have a reasonably high thermal stability. Moreover, the ligation of boron to uranium (and thorium) in the described complexes takes place exclusively through three bridging hydrogen atoms; this behaviour seems to reflect the enhanced coordinating power of actinide elements due to their bigger size with respect to the transition elements (such as Zr, Hf, etc.) in which the BH₄ group is coordinated to the metal through a bidentate bond. Finally, they show very interesting and peculiar ¹H NMR behaviour wich is quite sensitive to the nature of the ligands present in the molecule [12].

Acknowledgements

The authors are indebted to Mr. F. Braga and Mr. V. Corrado for their technical assistance.

References

- 1 T. J. Marks and J. R. Kolb, Chem. Rev., 77, 263 (1977).
- 2 E. R. Bernstein, W. C. Hamilton, T. A. Keiderling, S. J. La Place, S. J. Lippard and J. J. Mayerle, *Inorg. Chem.*, 11, 3009 (1972).

- 3 D. D. Perrin, N. L. F. Armarego and D. R. Perrin, 'Purification of Laboratory Chemicals', 2nd edn., Pergamon, Oxford, 1980.
- 4 A. Marigo, R. Gerbasi, P. Zanella and G. Rossetto, Ann. Chim. (Rome), 425 (1981).
- 5 D. Baudry, P. Charpin, M. Ephritikine, G. Folcher, J. Lambard, M. Lance, M. Nierlich and J. Vigner, J. Chem. Soc., Chem. Commun., 1553 (1985).
- 6 A. Berton, M. Porchia, G. Rossetto and P. Zanella, J. Organomet. Chem., 302, 351 (1986).
- 7 A. L. Arduini, N. M. Edelstein, J. D. Jamerson, J. G. Reynolds, K. Schmid and J. Takats, *Inorg. Chem.*, 20, 2470 (1981).
- 8 M. Porchia, N. Brianese, F. Ossola, G. Rossetto and P. Zanella, J. Chem. Soc., Dalton Trans., 691 (1987).
- 9 P. Zanella, G. De Paoli, G. Bombieri, G. Zanetti and R. Rossi, J. Organomet. Chem., 142, C21 (1977).
- 10 N. Edelstein, Inorg. Chem., 20, 197 (1981).
- 11 K. N. Raymond and C. W. Eigenbrot, Acc. Chem. Res., 13, 276 (1980).
- 12 W. Jahn, K. Yunlu, N. Oroschin, H. D. Amberger and R. D. Fischer, *Inorg. Chim. Acta*, 95, 85 (1984).
- 13 M. L. Anderson and L. R. Crisler, J. Organomet. Chem., 17, 345 (1969).
- 14 H. S. Ahuja and S. B. Karweer, Indian J. Chem., 21A, 272 (1982).
- 15 R. D. Fischer, in T. J. Marks and L. Fragalà (eds.), 'Fundamental and Technological Aspects of Organo f-Element Chemistry', NATO ASI Series C: Mathematical and Physical Sciences, Vol. 155, D. Reidel, Dordrecht, 1985, p. 277.
- 16 P. Zanella, F. Ossola, M. Porchia, G. Rossetto, A. Chiesi Villa and C. Guastini, J. Organomet. Chem., 323, 295 (1987).
- 17 G. Folcher, J. Lambard and H. Marquet-Ellis, Nouv. J. Chim., 4, 737 (1980).
- 18 R. Shinohoto, E. Gamp, N. M. Edelstein, D. H. Templeton and A. Zalkin, *Inorg. Chem.*, 22, 2351 (1983).