Production of Methanol and Light Hydrocarbons on ThO₂ and Doped-ThO₂ from CO + H₂ Mixtures^{*}

C. A. COLMENAREST, T. McCREARY and C. EVANS *University of California. Lawrence Livermore National Laboratory, Livermore. Calif. 94550, U.S.A.*

The use of pure $ThO₂$ and $ThO₂$ with 10 at% Na on its surface as catalysts for methanol and methanol-isobutyl alcohol, respectively, has been reported by Maj et al. $[1]$. As part of our studies of the intrinsic catalytic properties of the actinide elements and their compounds, we are extending the work of Maj et *al.* by studying the effect of small amounts of K, Rb and Pd on the activity and the selectivity of $ThO₂$ to produce methanol from a $2H_2$:1 CO gas mixture.

Experimental

The catalysts were prepared by precipitation of thorium oxycarbonate from boiling thorium nitrate solutions using an ammonium carbonate solution containing the dopant cation as a soluble nitrate or carbonate. The precipitate was washed with water several times and air-dried at room temperature for 16-24 h, followed by calcination in air at 520 K. Four doped $ThO₂$ catalysts were prepared for study: 100 ppm K, 1000 ppm K, 74 ppm Rb, and 100 ppm Pd. The preparation techniques have been described in detail elsewhere [11.

Synthesis gas reactions were carried out in a copper-lined, stainless-steel, tubular reactor (1.25 cm i.d. \times 60 cm long) equipped with a coaxial thermocouple that projected into the catalyst bed. All experiments were run using a single pass of the gas stream through the catalyst bed. Copper was chosen as the liner for the reactor to prevent methane formation from $CO + H₂$, which is normally observed in iron-containing alloys [2]. Experiments were carried out with a $2H_2$:1CO gas mixture at ~50 atm as a function of temperature $(550-623 \text{ K})$ and flow-rate $[40-150 \text{ cm}^3 \text{ (STP)/min}].$

Analysis of the reaction products was carried out with a gas chromatograph equipped with a flame ionization detector and Chromosorb 102 column.

Surface areas of the freshly prepared and used catalysts were measured by the BET technique. Surface analyses of fresh and used catalysts were performed by X-ray photoelectron spectroscopy (XPS).

Results and Discussion

The addition of dopants to $ThO₂$ resulted in an increase of the surface area of the fresh catalysts and in a less severe reduction in area after synthesis in comparison to pure ThO₂ and ThO₂ with 10 at% Na on the surface (Table I). The effect of K and Rb is not surprising considering that oxidized alkali metals are commonly used to increase and stabilize the surface area of catalysts [3].

TABLE I. Surface Areas of Doped ThO₂ Catalysts

Catalyst	Surface area (m^2/g)	% change		
	As prepared	Used	in area	
ThO ₂ $[1]$	130	36	72	
$Na-ThO2[1]$	120	50	58	
100 ppm K -ThO ₂	148	103	30	
1000 ppm K -ThO ₂	156	114	27	
74 ppm Rb –ThO ₂	140	85	39	
100 ppm $Pd - ThO2$	164	157	38	

XPS surface analysis of the doped catalysts did not show any segregation of K, Rb or Pd to the surface, in contrast with the Na-doped catalyst studied by Maj er *al.* [I], which had 10 at% Na on the surface present as $Na₂O$. Thus we speculate that these dopants may be present as substitutional cations in the ThO₂ oxide lattice, most probably as oxides [3]; future X-ray diffraction studies may provide the data required to answer these questions. Because K_2O is a strong base it should affect strongly the performance of $ThO₂$ as a catalyst, followed by Rb [3].

Three of the catalysts studied (100 ppm $K-\text{ThO}_2$, 74 ppm $Rb-ThO₂$ and 100 ppm $Pd-ThO₂$) were predominantly methanol catalysts, as shown in a plot of production rate *versus* temperature (Fig. 1). The 100 ppm K catalyst nearly doubled the yield of methanol over that of pure $ThO₂$, while increasing the selectivity for this alcohol from 85-95% for pure ThO₂ to 99% for the doped catalyst. Catalysts with 74 ppm Rb and 100 ppm Pd increased the methanol yield by 15 and 12%, respectively, over that for ThO₂, and their selectivities were about 98 and 90%,

^{*}Work performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore National Laboratory under contract number W-7405-ENG-48. Paper presented at the Second International Conference on the Basic and Applied Chemistry of f-Transition (Lanthanide and Actinide) and Related Elements (2nd ICLA), Lisbon, Portugal, April 6-10, 1987.

[?]Author to whom correspondence should be addressed.

Catalyst	Т (K)	mol/kg catalyst-hour ^a			
		CH ₄	CH ₃ OH	$i-C4H10$	i -C ₄ H ₉ OH
ThO ₂ [1]	600	0.009	0.74	0.22	0.18
$Na-ThO2[1]$	600	0.014	0.67	0.08	0.61
100 ppm $K-\text{ThO}_2$	585	0.007	1.22	trace	
74 ppm Rb –ThO ₂	583	0.007	0.85		
100 ppm Pd -ThO ₂	586	0.007	0.83	0.08	0.004

TABLE II. Comparison of Yields for Doped ThO₂ Catalysts under Optimum Conditions

^aAll values normalized to 45.4 atm 2H₂:1CO.

Fig. 1. Production of methanol on ThO₂ and doped-ThO₂ as a function of temperature.

respectively. Other significant products produced by these catalysts were methane, isobutane and isobutyl alcohol (Table II). The very significant changes produced by K-doping may be due to (a) an increase in the basicity of the $ThO₂$ due to the strong basic character of K_2O ; or (b) a change in the conduction mechanism of the $ThO₂$ caused by the introduction of singly charged oxygen vacancies if K^+ is in substitutional positions. This can in turn lead to significant work function changes in ThO₂ [4], which will affect its reactivity.

Increasing the potassium concentration to 1000 ppm changed drastically the properties of $ThO₂$. The methanol yield was reduced by a factor of 67 from that for the 100 ppm K-catalyst and small amounts of other hydrocarbons were produced as well (Table III). Methanol was still the main product (8%) at 577 K, but it was reduced to a trace at 739 K and higher temperatures.

The activation energy for the production of methanol over the 100 ppm $K-\text{ThO}_2$ catalyst was 42

TABLE III. Production of Methanol and Hydrocarbons on 1000 ppm $K - ThO₂$

Component	mol/kg catalyst-hour				
	577 K	739 K	783 K		
CH ₄	0.0084	0.0270	0.3770		
CH3OH	0.0180	3×10^{-5}	3×10^{-5}		
C_2H_4	0.0003	0.0026	0.0220		
C_2H_6	0.0012	0.0029	0.0750		
C_3H_8	0.0005	0.0090	NM		
$i-C4H10$	0.0005	0.0064	0.0450		
C_4H_{10}	0.0004	0.0012	0.0140		
i-C4H8	0.0006	0.0007	0.0160		
$i-C5H12$		0.0013	0.0120		
C_5H_{12}		0.0009	0.0040		
C_6H_{14}			0.0012		
C_7H_{16}	0.005				

NM = not measured.

kJ/mol, which is in good agreement with the values previously obtained for pure ThO₂ and Na-doped ThO₂, (45 kJ/mol) [1]. The values measured for the 74 ppm Rb and 100 ppm Pd catalysts were much lower (\sim 25 kJ/mol) but we do not believe these values are very reliable.

References

- J. Maj, C. A. Colmenares and G. A. Somorjai, J. *Coral., 95,* 385 (1985).
- H. Pichler and K. H. Ziesecke, *Brennst-Chem., 30,* 13 (1949).
- M. E. Dry, in J. R. Anderson and M. Boudart (eds.), Catalysis - Science and Technology', Vol. 1, Springer-Verlag, Berlin/Heidelberg/New York, 1981, Chap. 4, p. 159.
- C. A. Colmenares, *Prog. Solid State Chem., 15, 257 (1984).*