LESTER R. MORSS[†]

Chemistry Division, Argonne National Laboratory, Argonne, Ill. 60439, U.S.A.

HANSJÜRGEN MATTAUSCH, REINHARD KREMER, ARNDT SIMON

Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, D-7000 Stuttgart 80, F.R.G.

and JOHN D. CORBETT

Department of Chemistry and Ames Laboratory, Iowa State University, Ames, Iowa 50011, U.S.A.

The discovery of the remarkable Gd_2Cl_3 [1, 2] has been followed by syntheses of several other sesquihalides, e.g. see refs. 3 and 4. Such compounds are now recognized to contain clusters with chains of edge-sharing metal octahedra [5, 6]. Synthetic research has led to other early transition-metal halides with extended metal-metal bonds and to clusters with interstitial H, C, or N atoms [7-9]. These studies have led to correlations of their properties and to theoretical treatments of their electronic structure [10].

This paper reports the direct determination of the enthalpy of formation of the first-discovered lanthanide condensed cluster halide.

Experimental

A sample of Gd_2Cl_3 was made available from syntheses that had been carried out by slow reactions

of GdCl₃ on Gd metal in sealed Ta ampoules [3]. It was handled in nitrogen-filled dry boxes. DTA scans showed no indication of the $GdCl_3-Gd_2Cl_3$ eutectic. Microchemical analyses were carried out on three samples by acid-base titration to determine Gd oxidation number [11] and by potentiometric titration for Cl⁻; calc. for Gd 74.7 mass%, found 74.0 (as Gd^{1.5+}); calc. for Cl 25.3 mass%, found 24.9. Modified Guinier X-ray powder photographs confirmed only the presence of Gd₂Cl₃.

Samples of each preparation were weighed into glass ampoules and reacted with dilute HCl(aq) in multiple-batch isoperibol solution calorimeters [12]. The enthalpies of reaction are shown in Table 1. The acid concentration was chosen to match that used for enthalpy of solution of Gd metal [13] in order to close the thermochemical cycle.

TABLE I. Enthalpy of Solution of Gd_2Cl_3 in 140 cm³ of 0.25 mol dm⁻³ HCl(aq) at 298.15 K

Mass (mg)	<i>q</i> ^a (J)	$\Delta H (kJ mol^{-1})$
20.39	40.05	-826.0
16.10	31.99	-835.0
12.11	23.61	- 820.5

^aCorrected for evaporation of water into N_2 in ampoule and into H_2 evolved.

Results and Conclusions

The thermochemical cycle leading to $\Delta_f H^\circ$. (Gd₂Cl₃,s, 298 K) is shown in Table II. Using the enthalpy of formation of GdCl₃, -1007.6 ± 2.0 kJ mol⁻¹ [14, 15], we calculate the important enthalpy of the symproportionation reaction

$$Gd(s) + GdCl_3(s) = Gd_2Cl_3(s)$$
(1)

to be $-30 \pm 15 \text{ kJ mol}^{-1}$, a small but significant exothermic effect.

TABLE II. Thermochemical Cycle for $\Delta_{f} H^{\circ}(Gd_{2}Cl_{3},s)$ at 298.15 K [(soln) = 0.25 mol dm⁻³ HCl(aq)]

 $Gd_2Cl_3(s) + 3HCl(soln) = 2GdCl_3(soln) + \frac{3}{2}H_2(g)$ $2Gd(s) + 6HCl(soln) = 2GdCl_3(soln) + 3H_2(g)$ $\frac{3}{2}H_2(g) + \frac{3}{2}Cl_2(g) = 3HCl(soln)$ $\Delta_f H^{\circ}(Gd_2Cl_3, s, 298.15 \text{ K}) = -\Delta H_1 + \Delta H_2 + \Delta H_3$ $= -1038 \pm 15 \text{ kJ mol}^{-1}$

^aThis work. ^bRef. 13. ^cRef. 14.

0020-1693/87/\$3.50

 $\Delta H_1 = -827 \pm 15 \text{ kJ}^{a}$

 $\Delta H_2 = 2(-683.6 \pm 2.4 \text{ kJ})^{\mathbf{b}}$

 $\Delta H_3 = 3(-166.0 \pm 0.1 \text{ kJ})^{c}$

^{*}Paper presented at the Second International Conference on the Basic and Applied Chemistry of f-Transition (Lanthanide and Actinide) and Related Elements (2nd ICLA), Lisbon, Portugal, April 6-10, 1987.

[†]Author to whom correspondence should be addressed.

The structure of Gd_2Cl_3 has been discussed in terms of Gd-Gd and Gd-Cl bonding [2, 3, 10]. Magnetic [16] and UPS [17] measurements have characterized the Gd as a 4f⁷ ion and the Gd-Cl bond distances are similar to those in GdCl₃. It is clear from the small $\Delta H(1)$ that the sum of the bonding interactions in Gd₂Cl₃ are very similar to those of the Gd-Gd bonds in the metal and the Gd-Cl bonds in the trichloride.

Acknowledgements

This work has been carried out in part under the auspices of the Office of Basic Energy Sciences, Division of Chemical Sciences, U.S. Department of Energy, under contract number W-31-109-ENG-38.

References

- 1 J. E. Mee and J. D. Corbett, Inorg. Chem., 4, 88 (1965).
- 2 D. A. Lokken and J. D. Corbett, *Inorg. Chem.*, 12, 556 (1973).

- 3 A. Simon, N. Holzer and Hj. Mattausch, Z. Anorg. Allg. Chem., 456, 207 (1979).
- 4 Hj. Mattausch, J. B. Hendricks, R. Eger, J. D. Corbett and A. Simon, *Inorg. Chem.*, 19, 2128 (1980).
- 5 A. Simon, Chemie Unserer Zeit, 10, 1 (1976).
- 6 J. D. Corbett, Acc. Chem. Res., 14, 239 (1981).
- 7 J. D. Corbett, J. Solid State Chem., 37, 335 (1981).
- 8 A. Simon, Angew. Chem., 93, 23 (1981).
- 9 A. Simon, J. Solid State Chem., 57, 2 (1985).
- 10 D. W. Bullett, Inorg. Chem., 24, 3319 (1985).
- 11 L. R. Morss, Th. Schleid and G. Meyer, *Inorg. Chim. Acta*, 140, 109 (1987).
- 12 J. W. Bruno, T. J. Marks and L. R. Morss, J. Am. Chem. Soc., 105, 6824 (1983).
- 13 F. H. Spedding and J. P. Flynn, J. Am. Chem. Soc., 76, 1474 (1954).
- 14 L. R. Morss, Chem. Rev., 76, 827 (1976).
- 15 D. D. Wagman, W. H. Evans, V. B. Parker, R. H. Schumm, I. Halow, S. M. Bailey, K. L. Churney and R. L. Nuttall, J. Phys. Chem. Ref. Data, 11, Suppl. 2 (1982).
- 16 R. Kremer, Ph.D. Thesis, Darmstadt, F.R.G., 1985.
- 17 G. Ebbinghaus, A. Simon and A. Griffiths, Z. Naturforsch., Teil A, 37, 564 (1982).