The Action of Sodium on NdCl₃ and PrCl₃: Mixed Valence NaNd₂Cl₆ and Metallic NaPr₂Cl₆*

THOMAS SCHLEID and GERD MEYER⁺

Institut fiir Anorganische und Analytische Chemie, Justus-Liebig-Universität, Heinrich-Buff-Ring 58, *6300 Giessen, F.R.G.*

In the course of our investigation of the action of sodium on lanthanide(III) chlorides, $MCl₃$, two cases have so far emerged. First, trichlorides with low (assessed) standard electrode potentials, $E^{\circ}(M^{3+}/M^{2+})$ [1], are reduced to dichlorides, MCl_2 , with $M = Eu$, Yb, Sm, Tm, Dy [2]. Secondly, trichlorides with high E° values are reduced partly to the metal thereby producing NaCl. With surplus $MCl₃$ excellent media for crystal growth of $Na₃MCl₆$ -type ternary chlorides $(M = Gd [3], Er [4])$ are provided.

The case of neodymium (next to dysprosium in the series of reduction potentials) remained puzzling. While the reduction of $NdCl₃$ with lithium and potassium to $NdCl₂$ and $KNd₂Cl₅$ is straightforward [5], the only well-crystallized 'product' of the sodium reduction of $NdCl₃$ was NdOCl [6], although in a negligible percentage. The main product, now analysed as $NaNd₂Cl₆$, would not crystallize nearly as perfectly and, more importantly, fooled us because it exhibits almost the same X-ray powder pattern as NdCl₃. Only a structure determination could reveal its true nature, that of a ternary mixed-valence Nd(II)-Nd(III) chloride.

With praseodymium (adjacent to neodymium in the lanthanide series and taking advantage of the above-mentioned knowledge) a close inspection of the sodium reduction of PrCl₃ seemed and proved worthwhile. Especially because the question still remains for praseodymium whether a divalent state in solid halides exists or not. In fact, it does neither in iodides (PrI₂ [7, 8] and Pr₂I_s [9] are apparently metallic) nor in bromides, with $Pr₂Br_s$ having to be formulated as $(\text{Pr}^{3+})_2(e^-)(\text{Br}^{-})_5$ [10]. Single crystals of NaPr_2Cl_6 could be isolated and, indeed, the structure determination reveals no evidence for divalent praseodymium.

Experimental

The ammonium chloride route ('wet' variant) [11, 12] was followed to convert $Nd₂O₃$ and 'Pr₆O₁₁' (Johnson-Matthey, 3 N) into the trichlorides $NdCl₃$ and PrC13. Equimolar amounts of sodium and the respective trichloride, e.g., 13.2 mg Na and 141.8 mg PrCls, were placed under anaerobic and anhydrous conditions into carefully cleaned tantalum tubes that were subsequently sealed by He-arc welding and jacketed in silica tubing under vacuum [13]. These were then kept for one week at around or above the melting points of the trichlorides (for $Na/PrCl₃$, 750 °C; for Na/NdCl₃, 850 °C) after which the power to the furnace was turned off.

 $NaNd₂Cl₆$ (1) (green/black) and $NaPr₂Cl₆$ (2) (blue/black) are decomposed by moist air with the evolution of hydrogen. Water leads to immediate decomposition in the case of $NaNd₂Cl₆$, with the short intermediate appearance of an orange colour.

Single crystals of hexagonally columnar shape could be selected under sodiumdried petroleum. The crystals were sealed into thin-walled glass capillaries and their quality was checked by Weissenberg photographs. Details of the data collection and structure determination processes are summarized in Tables I and II.

Data Collection

A four-circle diffractometer, Philips PW 1100, was used for compound **1** and a Siemens AED for 2 with Mo K α radiation and graphite monochromator: λ = 71.07 pm, ω -scan speed: 0.12 \degree /s (1), variable (2); scan width: 5.4° (1), $2.5-2.7$ ° (2); $3^{\circ} \le \theta \le 30^{\circ}$; $F(000) = 233$ (1), 231 (2); $\mu = 126.95$ (1), 125.32 (2) cm⁻¹.

TABLE I. Lattice Constants (pm) and Molar Volumes (V_m) $(cm³ mol⁻¹)$

Compound		2
Formula	NaNd ₂ Cl ₆	NaPr ₂ Cl ₆
(I) Guinier-Simon		
[14, 15]		
a	762.60(5)	756.77(5)
с	438.66(4)	429.34(4)
$V_{\mathbf{m}}$	133.05(2)	128.24(2)
(II) Four-circle		
diffractometer		
a	762.6	756.5
c	438.8	429.2
$V_{\mathbf{m}}$	133.1	128.1
Crystal system	hexagonal	hexagonal
Space group	$P6_3/m$ (no. 176) $P6_3/m$ (no. 176)	
z		

^{*}Paper presented at the Second International Conference on the Basic and Applied Chemistry of f-Transition (Lanthanide and Actinide) and Related Elements (2nd ICLA), Lisbon, Portugal, April 6-10, 1987.

tAuthor to whom correspondence should be addressed.

TABLE II. Atomic Coordinates and Temperature Factors^a

	$\text{NaNd}_2\text{Cl}_6(1)$	$\text{NaPr}_2\text{Cl}_6(2)$
Na	$(2a): 0, 0, \frac{1}{4}$	(2b): 0, 0, 0
	$k: 1.2(1)^*$	$k: 0.99(6)^*$
Nd/Pr	$(2c) \frac{1}{3}, \frac{2}{3}, \frac{1}{4}$	
Cl	(6h) $x, y, \frac{1}{4}$	
	x: 0.3864(9)	x: 0.3881(2)
	y: 0.3043(9)	y: 0.3028(2)
Na	U_{11} : 177(88)	U_{11} : 193(49)
	U_{33} : 361(145)	U_{33} : 405(86)
	U_{12} : 89(44)	U_{12} : 97(24)
Nd/Pr	U_{11} : 208(7)	U_{11} : 144(2)
	U_{33} : 161(8)	U_{33} : 162(3)
	U_{12} : 104(3)	U_{12} : 72(1)
Cl	U_{11} : 678(53)	U_{11} : 139(5)
	U_{22} : 712(55)	U_{22} : 139(5)
	U_{33} : 343(33)	U_{33} : 206(6)
	U_{12} : 469(50)	U_{12} : 81(4)

 $B_{exp[-2\pi^2(U_{11}h^2a^{*2} + ... + U_{13}hla^*c^*)]}, U_{23} = U_{13} = 0$; for Na and Nd/Pr: $U_{22} = U_{11}$; U_{ij} in pm². Asterisk represents occupation factor.

Data corrections for background, polarization and Lorentz factors were made. Absorption: (2) ψ -scan for 10 reflections, transmission factors ranging between 0.225 and 0.412.

For compound 1, 1395 data were collected, 246 unique reflections $(R_{\text{int}} = 0.071)$, 202 reflections with $|F_{o}| \ge 2\sigma |F_{o}|$; for compound 2, 2436 data were collected, 231 unique reflections $(R_{int} = 0.040)$, 203 reflections with $|F_{o}| \ge 2\sigma |F_{o}|$.

Structure Determination

Program system SHEL-X 76 [16] was used with scattering factors from Cromer et al. [17, 18], Patterson (Nd/Pr) and difference Fourier syntheses (Cl, Na), full-matrix least-squares refinement, (1) $R =$ 0.068, $R_w = 0.060$ $[w = 2.669\sigma^{-2} |F_o|]$; (2) $R =$ 0.019, $\ddot{R}_{w} = 0.021$ $10^{-4}F_{\rm o}{}^{2}$]. $[w = 0.769\sigma^{-2} |F_{\rm o}| + 9.37 \times$

Results and Discussion

Both NaPr₂Cl₆ and NaNd₂Cl₆ ($Z = 1$) crystallize essentially with the $UCl₃$ structure type (Fig. 1) to which PrCl₃ and NdCl₃ belong [19, 20] with $Z = 2$, *i.e.*, with the unit cell content, for example, Nd_2Cl_6 . Minute deviations of the lattice constants, *a* and c, and the molar volume, V_m , occur when sodium is taken up. For the couple $PrCl₃$ and $NaPr₂Cl₆$, only *a* expands considerably (742 to 756 pm) while c remains almost constant (427 versus 429 pm). In contrast, both lattice constants expand considerably from $NdCl₃$ to $NaNd₂Cl₆$ (740 to 763, and 424 to

Fig. 1. A side-view of the chloride layers of the crystal structures of NaM_2Cl_6 (M = Pr, Nd) with two polyhedra around M (\bullet) outlined. The (2a) \circledast , left) and (2b) \circledast , right) sites that may be occupied statistically by $Na⁺$ in $NaNd₂Cl₆$ and $NaPr₂Cl₆$, respectively, are indicated; most of the possible Na⁺ positions are omitted for clarity.

439 pm, respectively). Accordingly, volume expansion is larger for the $2NdCl₃/NaNd₂Cl₆ couple (121)$ to 133 cm³ mol⁻¹) than for $2PrCl₃/NaPr₂Cl₆$ (123 to $128 \text{ cm}^3 \text{ mol}^{-1}$). The latter volume expansion corresponds to the volume increment of one Na⁺ per formula unit $(6.5 \text{ cm}^3 \text{ mol}^{-1}$ from ref. 21), while for the neodymium chlorides the difference of 12 cm^3 mol^{-1} accounts not only for the volume increment of one Na' but, in addition, for the volume increase because of the reduction of half of Nd^{3+} to Nd^{2+} .

This would then suggest that $N_1N_2Cl_6$ is a mixed valence chloride according to the formulation (Na^+) $(Nd^{2+,3+})_2$ (Cl⁻)₆ with di- and trivalent neodymium statistically distributed over the sites of Nd^{3+} in $NdCl₃$. This view is supported by a comparison of the mean distances $Nd^{n+}-Cl^{-}$ in NdCl₃ (290 pm), $NaNd₂Cl₆$ (299 pm) and $NdCl₂$ (313 pm), for details see Table III. Because neodymium is nine-coordinate in all three chlorides, the average oxidation state $n+$ in NaNd_2Cl_6 may well be accepted as +2.5. Difficulties arise from the rather minor quality of the NaNd_2Cl_6 crystals when compared with NaPr_2Cl_6 . Although the *R* values for $NaNd_2Cl_6$ are acceptable, standard deviations and temperature factors are quite large. The essential problem, however, is the occupation of the (2a) sites by, statistically, about one Na+. This site is nine-coordinate with three short (269 pm) and six large (347 pm) distances of $Na⁺$ Cl^- . The average of 321 pm, however, is quite acceptable when compared with eight-coordinate $Na⁺$ in Na_3ErCl_6 , $\bar{d}(\text{Na}^{\text{+}}-\text{Cl}^-)$ = 313 pm [4]. Furthermore, a comparison of the electrostatic (Madelung) parts of the lattice energy, MAPLE $[22]$, of NaNd₂Cl₆ with the binaries NaCl, $NdCl₂$ and $NdCl₃$ gives good correspondence (see Table IV). On the other hand, such a strange nine-coordination of Na⁺ could well be an artefact arising through merohedral twinning of individuals when the (2b) sites are occupied statistically by Na+.

TABLE III. Important Interatomic Distances (pm) in NaPr₂Cl₆ and NaNd₂Cl₆ and Related Chlorides

 $a_{\bar{d}}$ = mean distance.

TABLE IV. A Comparison of the Madelung Parts of the Lattice Energies (MAPLE) of NaCl, NdCl₂ and NdCl₃ with NaNd₂Cl₆ and NaPr₂Cl₆ (in kcal/mol)

Such an occupation of octahedral sites (Na in (2b)) is indeed observed for the much better quality crystals of $NaPr₂Cl₆$ with the occupation factor refining very well to one $Na⁺$ on the two-fold site. Still, the (overall) oxidation state of praseodymium could also be +2.5. However, as the above-mentioned volume comparison for 2PrCl₃ with NaPr₂Cl₆ indicates, this can hardly be the case. Support for the view that there is only Pr^{3+} present in NaPr₂Cl₆ arises from comparison of the Pr^{n+} to Cl^- distances in $NaPr₂Cl₆$ and $PrCl₃$, where coordination numbers are equal (nine). Average distances are: 295 (NaPr₂- Cl_6) and 292 pm (PrCl₃). Although slightly different, one should bear in mind that a $Pr^{2+} - Cl^-$ distance would be expected to be around 315 pm and with $Pr^{2.5+}$ one would expect $d = 305$ pm. Therefore, NaPr₂Cl₆ can safely be formulated as $(Na^+)(Pr^{3+})_2$ - (e^{-}) (Cl⁻)₆ and, hence, should be metallic; a proposition that is supported by the metallic lustre of the ternary chloride.

With $NaPr₂Cl₆$ being metallic and praseodymium trivalent therein, there is presently no evidence left for a stable divalent state in a bulk praseodymium halide. As the true nature of $PrCl_{2,31}$ [23] is unknown, it could, again, be thought that this chloride could be mixed valent. However, with $Pr₂Br₅$ $(\equiv PrBr_{2.5})$, previously thought to be PrBr_{2.38} [24] and being in fact $(Pr^{3+})_2(e^-)(Br^-)$ ₅ and given additionally the knowledge about $NaPr₂Cl₆$, one might rather suspect that $PrCl_{2,31}$ according to $(Pr^{3+})_{0,6}$. $(\text{Pr}^{3+})_2(\text{e}^{-})_{1,8}(\text{Cl}^{-})_6$ would be analogous to NaPr₂Cl₆.

The apparent non-existence of divalent praseodymium can be brought into accord with the sequence of the (assessed) standard electrode potentials E° for the couples M^{3+}/M^{2+} . These are for M = Tm, Dy, Nd, Ho, Pr: $-2.27, -2.42, -2.62, -2.80$, -3.03 V. With true divalent states in dichlorides known for the first three metals, holmium is obviously the last element in this series with a divalent state, although only in the mixed-valence chloride Ho_5Cl_{11} [25]. For praseodymium and beyond, a divalent state in the presence of halide ions is then apparently non-existent.

Acknowledgements

Financial support from the Deutsche Forschungsgemeinschaft, Bonn, F.R.G., and the Fonds der Chemischen Industrie, Frankfurt/Main, F.R.G. is gratefully acknowledged.

References

- 1 L. R. Morss, *Chem. Rev., 76, 827 (1976).*
- 2 G. Meyer and Th. Schleid, J. Less-Common *Met.,* 116, 187 (1986).
- 3 G. Meyer,Z. *Anorg. Allg.* Chem., 517, 191 (1984).
- 4 G. Meyer, P. Ax, Th. Schleid and M. Irmler, Z. *Anorg. Allg. Chem., in* press.
- 5 G. Meyer and Th. Schleid, Z. *Anorg. Allg.* Chem., 528, 55 (1985).
- 6 G. Meyer and Th. Schleid, *Z. Anorg. Allg. Chem., 533,* 181 (l-986).
- 7 J. D. Corbett, *Adv.* Chem. *Ser.,* 186, 329 (1980), and refs. therein.
- 8 E. Warkentin and H. Bärnighausen, Z. Anorg. Allg. Chem., 459, 187 (1979).
- 9 E. Warkentin and H. Bärnighausen, Proc. 3rd European *Crystallogr. Meeting,* Zurich, 1976; E. Warkentin, *Dissertation,* Karlsruhe, 1977.
- 10 Th. Schleid and G. Meyer, Z. *Anorg. Al/g. Chem.. in* press.
- 11 G. Meyer and P. *Ax,Mat. Res.* Bull., 17. 1447 (1982).
- 12 G. Meyer, *Inorg. Synth., 26,* (1988)
- 13 J. D. Corbett, *Inorg. Synth.*, 22, 15 (1983).
- 14 A. Simon, *J. Appl. Crystallogr., 3,* 11 (1970).
- 15 J. Soose, G. Meyer, 'SOS: Programme zur Auswertung von Guinier-Aufnahmen', Giessen, 1980.
- *16 G.* M. Sheldrick, 'SHEL-X 76', program for crystal structure determination, Cambridge, U.K., 1976.
- 17 D. T. Cromer and J. B. Mann, *Acta Crystallogr., Sect. A, 24, 321 (1968).*
- *18* D. T. Cromer and D. Liberman,J. *Chem. Phys., 53,* 1891 (1970).
- 19 D. H. Current, C. L. Eoiles and E. H. Carlson,Phys. Rev. B, 6, 737 (1972).
- 20 B. Morosin,J. *Chem. Phys., 49, 3007 (1968).*
- 21 W. Biltz, 'Raumchemie der festen Stoffe', L. Voss, Leipzig, 1934.
- 22 R. Hoppe,Adv. *Fluorine Chem., 6, 387* (1970).
- *23* L. F. Druding, J. D. Corbett and B. N. Ramsey, Inorg. *Chem.. 2, 869 (1963).*
- *24* R. A. Sallach and J. D. Corbett, Inorg. Chem., 2, 451 (1963).
- 25 U. Löchner, H. Bärnighausen and J. D. Corbett, Inorg. *Chem., 16. 2134 (1977).*