The Action of Sodium on NdCl₃ and PrCl₃: Mixed Valence NaNd₂Cl₆ and Metallic NaPr₂Cl₆*

THOMAS SCHLEID and GERD MEYER[†]

Institut für Anorganische und Analytische Chemie. Justus-Liebig-Universität, Heinrich-Buff-Ring 58, 6300 Giessen, F.R.G.

In the course of our investigation of the action of sodium on lanthanide(III) chlorides, MCl₃, two cases have so far emerged. First, trichlorides with low (assessed) standard electrode potentials, $E^{\circ}(M^{3+}/M^{2+})$ [1], are reduced to dichlorides, MCl_2 , with M = Eu, Yb, Sm, Tm, Dy [2]. Secondly, trichlorides with high E° values are reduced partly to the metal thereby producing NaCl. With surplus MCl₃ excellent media for crystal growth of Na₃MCl₆-type ternary chlorides (M = Gd [3], Er [4]) are provided.

The case of neodymium (next to dysprosium in the series of reduction potentials) remained puzzling. While the reduction of NdCl₃ with lithium and potassium to NdCl₂ and KNd₂Cl₅ is straightforward [5], the only well-crystallized 'product' of the sodium reduction of NdCl₃ was NdOCl [6], although in a negligible percentage. The main product, now analysed as NaNd₂Cl₆, would not crystallize nearly as perfectly and, more importantly, fooled us because it exhibits almost the same X-ray powder pattern as NdCl₃. Only a structure determination could reveal its true nature, that of a ternary mixed-valence Nd(II)-Nd(III) chloride.

With praseodymium (adjacent to neodymium in the lanthanide series and taking advantage of the above-mentioned knowledge) a close inspection of the sodium reduction of PrCl₃ seemed and proved worthwhile. Especially because the question still remains for praseodymium whether a divalent state in solid halides exists or not. In fact, it does neither in iodides (PrI_2 [7, 8] and Pr_2I_5 [9] are apparently metallic) nor in bromides, with Pr₂Br₅ having to be formulated as $(Pr^{3+})_2(e^-)(Br^-)_5$ [10]. Single crystals of NaPr₂Cl₆ could be isolated and, indeed, the structure determination reveals no evidence for divalent praseodymium.

Experimental

The ammonium chloride route ('wet' variant) [11, 12] was followed to convert Nd_2O_3 and Pr_6O_{11} (Johnson-Matthey, 3 N) into the trichlorides NdCl₃ and PrCl₃. Equimolar amounts of sodium and the respective trichloride, e.g., 13.2 mg Na and 141.8 mg PrCl₃, were placed under anaerobic and anhydrous conditions into carefully cleaned tantalum tubes that were subsequently sealed by He-arc welding and jacketed in silica tubing under vacuum [13]. These were then kept for one week at around or above the melting points of the trichlorides (for Na/PrCl₃, 750 °C; for Na/NdCl₃, 850 °C) after which the power to the furnace was turned off.

 $NaNd_2Cl_6$ (1) (green/black) and $NaPr_2Cl_6$ (2) (blue/black) are decomposed by moist air with the evolution of hydrogen. Water leads to immediate decomposition in the case of NaNd₂Cl₆, with the short intermediate appearance of an orange colour.

Single crystals of hexagonally columnar shape could be selected under sodium-dried petroleum. The crystals were sealed into thin-walled glass capillaries and their quality was checked by Weissenberg photographs. Details of the data collection and structure determination processes are summarized in Tables I and II.

Data Collection

A four-circle diffractometer, Philips PW 1100, was used for compound 1 and a Siemens AED for 2 with Mo K α radiation and graphite monochromator: $\lambda =$ 71.07 pm, ω -scan speed: 0.12 °/s (1), variable (2); scan width: 5.4° (1), $2.5-2.7^{\circ}$ (2); $3^{\circ} \le \theta \le 30^{\circ}$; F(000) = 233 (1), 231 (2); $\mu = 126.95$ (1), 125.32 $(2) \text{ cm}^{-1}$.

TABLE I. Lattice Constants (pm) and Molar Volumes (V_m) (cm³ mol⁻¹)

Compound	1	2	
Formula	NaNd ₂ Cl ₆	NaPr ₂ Cl ₆	
(I) Guinier-Simon			
[14, 15]			
a	762.60(5)	756.77(5)	
С	438.66(4)	429.34(4)	
V _m	133.05(2)	128.24(2)	
(II) Four-circle			
diffractometer			
a	762.6	756.5	
С	438.8	429.2	
$V_{\mathbf{m}}$	133.1	128.1	
Crystal system	hexagonal	hexagonal	
Space group	$P6_3/m$ (no. 176) $P6_3/m$ (no. 176)		
Z	1	1	

^{*}Paper presented at the Second International Conference on the Basic and Applied Chemistry of f-Transition (Lanthanide and Actinide) and Related Elements (2nd ICLA), Lisbon, Portugal, April 6–10, 1987. [†]Author to whom correspondence should be addressed.

TABLE II. Atomic Coordinates and Temperature Factors^a

	$NaNd_2Cl_6(1)$	$NaPr_2Cl_6(2)$	
Na	(2a): 0, 0, $\frac{1}{4}$	(2b): 0, 0, 0	
	$k: 1.2(1)^*$	k: 0.99(6)*	
Nd/Pr	$(2c)\frac{1}{3},\frac{2}{3}$	$\frac{2}{4}, \frac{1}{4}$	
Cl	(6h) x, y, $\frac{1}{4}$		
	x: 0.3864(9)	x: 0.3881(2)	
	y: 0.3043(9)	y: 0.3028(2)	
Na	U ₁₁ : 177(88)	U ₁₁ : 193(49)	
	U33: 361(145)	U33: 405(86)	
	U ₁₂ : 89(44)	U ₁₂ : 97(24)	
Nd/Pr	U_{11} : 208(7)	U_{11} : 144(2)	
	U ₃₃ : 161(8)	U33: 162(3)	
	U_{12} : 104(3)	U_{12} : 72(1)	
Cl	$U_{11}: 678(53)$	$U_{11}: 139(5)$	
	U ₂₂ : 712(55)	U22: 139(5)	
	U33: 343(33)	U33: 206(6)	
	U ₁₂ : 469(50)	U12: 81(4)	

^aexp $[-2\pi^2(U_{11}h^2a^{*2} + ... + U_{13}hla^*c^*)]$, $U_{23} = U_{13} = 0$; for Na and Nd/Pr: $U_{22} = U_{11}$; U_{ij} in pm². Asterisk represents occupation factor.

Data corrections for background, polarization and Lorentz factors were made. Absorption: (2) ψ -scan for 10 reflections, transmission factors ranging between 0.225 and 0.412.

For compound 1, 1395 data were collected, 246 unique reflections ($R_{int} = 0.071$), 202 reflections with $|F_o| \ge 2\sigma |F_o|$; for compound 2, 2436 data were collected, 231 unique reflections ($R_{int} = 0.040$), 203 reflections with $|F_o| \ge 2\sigma |F_o|$.

Structure Determination

Program system SHEL-X 76 [16] was used with scattering factors from Cromer *et al.* [17, 18], Patterson (Nd/Pr) and difference Fourier syntheses (Cl, Na), full-matrix least-squares refinement, (1) R =0.068, $R_w = 0.060$ [$w = 2.669\sigma^{-2}|F_0|$]; (2) R =0.019, $R_w = 0.021$ [$w = 0.769\sigma^{-2}|F_0| + 9.37 \times 10^{-4}F_0^{-2}$].

Results and Discussion

Both NaPr₂Cl₆ and NaNd₂Cl₆ (Z = 1) crystallize essentially with the UCl₃ structure type (Fig. 1) to which PrCl₃ and NdCl₃ belong [19, 20] with Z = 2, *i.e.*, with the unit cell content, for example, Nd₂Cl₆. Minute deviations of the lattice constants, a and c, and the molar volume, V_m , occur when sodium is taken up. For the couple PrCl₃ and NaPr₂Cl₆, only a expands considerably (742 to 756 pm) while cremains almost constant (427 versus 429 pm). In contrast, both lattice constants expand considerably from NdCl₃ to NaNd₂Cl₆ (740 to 763, and 424 to

Fig. 1. A side-view of the chloride layers of the crystal structures of NaM₂Cl₆ (M = Pr, Nd) with two polyhedra around M (\odot) outlined. The (2a) (\bigcirc , left) and (2b) (\bigcirc , right) sites that may be occupied statistically by Na⁺ in NaNd₂Cl₆ and NaPr₂Cl₆, respectively, are indicated; most of the possible Na⁺ positions are omitted for clarity.

439 pm, respectively). Accordingly, volume expansion is larger for the $2NdCl_3/NaNd_2Cl_6$ couple (121 to 133 cm³ mol⁻¹) than for $2PrCl_3/NaPr_2Cl_6$ (123 to 128 cm³ mol⁻¹). The latter volume expansion corresponds to the volume increment of one Na⁺ per formula unit (6.5 cm³ mol⁻¹ from ref. 21), while for the neodymium chlorides the difference of 12 cm³ mol⁻¹ accounts not only for the volume increment of one Na⁺ but, in addition, for the volume increase because of the reduction of half of Nd³⁺ to Nd²⁺.

This would then suggest that NaNd₂Cl₆ is a mixed valence chloride according to the formulation (Na⁺) $(Nd^{2+,3+})_2(Cl^-)_6$ with di- and trivalent neodymium statistically distributed over the sites of Nd³⁺ in NdCl₃. This view is supported by a comparison of the mean distances $Nd^{n+}-Cl^{-}$ in $NdCl_3$ (290 pm), NaNd₂Cl₆ (299 pm) and NdCl₂ (313 pm), for details see Table III. Because neodymium is nine-coordinate in all three chlorides, the average oxidation state n+in NaNd₂Cl₆ may well be accepted as +2.5. Difficulties arise from the rather minor quality of the NaNd₂Cl₆ crystals when compared with NaPr₂Cl₆. Although the R values for $NaNd_2Cl_6$ are acceptable, standard deviations and temperature factors are quite large. The essential problem, however, is the occupation of the (2a) sites by, statistically, about one Na⁺. This site is nine-coordinate with three short (269 pm) and six large (347 pm) distances of Na⁺-Cl⁻. The average of 321 pm, however, is quite acceptable when compared with eight-coordinate Na⁺ in Na_3ErCl_6 , $d(Na^+-Cl^-) = 313$ pm [4]. Furthermore, a comparison of the electrostatic (Madelung) parts of the lattice energy, MAPLE [22], of NaNd₂Cl₆ with the binaries NaCl, NdCl₂ and NdCl₃ gives good correspondence (see Table IV). On the other hand, such a strange nine-coordination of Na⁺ could well be an artefact arising through merohedral twinning of individuals when the (2b) sites are occupied statistically by Na⁺.

TABLE III. Important Interatomic Distances (pm) in NaPr₂Cl₆ and NaNd₂Cl₆ and Related Chlorides

288.1 (6x)	
268.9 (3x), 347.0 (6x);∂ ^a : 320.9	
282.0	
Na1: 273.3 (2x), 277.9 (2x), 285.4 (2x); d: 278.9	
Na2: 281.9, 282.2, 284.6, 285.4, 319.4,	
329.8, 348.1, 374.1; <i>d</i> : 313.2	
293.6 (6x), 298.3 (3x); ð : 295.2	
290.9 (6x); 293.5 (3x); <i>d</i> : 291.8	
298.6 (3x), 299.2 (6x); <i>d</i> : 299.0	
295.0, 296.0 (2x), 302.7, 310.0,	
313.8 (2x), 344.6 (2x); <i>d</i> : 312.9	
288.7 (6×), 292.5 (3×); \vec{a} : 290.0	

ad = mean distance.

TABLE IV. A Comparison of the Madelung Parts of the Lattice Energies (MAPLE) of NaCl, NdCl₂ and NdCl₃ with NaNd₂Cl₆ and NaPr₂Cl₆ (in kcal/mol)

		NaNd ₂ Cl	6 NaPr ₂ Cl	6
Na ⁺	102.8	59.9	58.4	
Nd ²⁺	365.9			
Nd ³⁺	745.5	521.0 (2)	() 528.0 ((2x)
Cl ^a	102.8			
C11 ^b	96.9	116.7 (6)	() 117.9 ((6X)
C12 ^b	90.8			
Cl ^c	104.7 (3x))		
Σ	1818.8	1802.1	1821.8	
^a From	NaCl;	^b from NdCl ₂ ;	^c from NdCl ₃ .	

Such an occupation of octahedral sites (Na in (2b)) is indeed observed for the much better quality crystals of NaPr₂Cl₆ with the occupation factor refining very well to one Na⁺ on the two-fold site. Still, the (overall) oxidation state of praseodymium could also be +2.5. However, as the above-mentioned volume comparison for 2PrCl₃ with NaPr₂Cl₆ indicates, this can hardly be the case. Support for the view that there is only Pr^{3+} present in $NaPr_2Cl_6$ arises from comparison of the Pr^{n+} to Cl^- distances in NaPr₂Cl₆ and PrCl₃, where coordination numbers are equal (nine). Average distances are: 295 (NaPr₂- Cl_6) and 292 pm (PrCl₃). Although slightly different, one should bear in mind that a $Pr^{2+}-Cl^-$ distance would be expected to be around 315 pm and with $Pr^{2.5+}$ one would expect d = 305 pm. Therefore, $NaPr_2Cl_6$ can safely be formulated as $(Na^+)(Pr^{3+})_2$ -(e⁻)(Cl⁻)₆ and, hence, should be metallic; a proposition that is supported by the metallic lustre of the ternary chloride.

With NaPr₂Cl₆ being metallic and praseodymium trivalent therein, there is presently no evidence left for a stable divalent state in a bulk praseodymium halide. As the true nature of PrCl_{2,31} [23] is unknown, it could, again, be thought that this chloride could be mixed valent. However, with Pr₂Br₅ (\equiv PrBr_{2,5}), previously thought to be PrBr_{2,38} [24] and being in fact (Pr³⁺)₂(e⁻)(Br⁻)₅ and given additionally the knowledge about NaPr₂Cl₆, one might rather suspect that PrCl_{2,31} according to (Pr³⁺)_{0.6}-(Pr³⁺)₂(e⁻)_{1.8}(Cl⁻)₆ would be analogous to NaPr₂Cl₆.

The apparent non-existence of divalent praseodymium can be brought into accord with the sequence of the (assessed) standard electrode potentials E° for the couples M^{3+}/M^{2+} . These are for M =Tm, Dy, Nd, Ho, Pr: -2.27, -2.42, -2.62, -2.80, -3.03 V. With true divalent states in dichlorides known for the first three metals, holmium is obviously the last element in this series with a divalent state, although only in the mixed-valence chloride Ho₅Cl₁₁ [25]. For praseodymium and beyond, a divalent state in the presence of halide ions is then apparently non-existent.

Acknowledgements

Financial support from the Deutsche Forschungsgemeinschaft, Bonn, F.R.G., and the Fonds der Chemischen Industrie, Frankfurt/Main, F.R.G. is gratefully acknowledged.

References

- 1 L. R. Morss, Chem. Rev., 76, 827 (1976).
- 2 G. Meyer and Th. Schleid, J. Less-Common Met., 116, 187 (1986).
- 3 G. Meyer, Z. Anorg. Allg. Chem., 517, 191 (1984).
- 4 G. Meyer, P. Ax, Th. Schleid and M. Irmler, Z. Anorg. Allg. Chem., in press.
- 5 G. Meyer and Th. Schleid, Z. Anorg. Allg. Chem., 528, 55 (1985).
- 6 G. Meyer and Th. Schleid, Z. Anorg. Allg. Chem., 533, 181 (1986).
- 7 J. D. Corbett, Adv. Chem. Ser., 186, 329 (1980), and refs. therein.
- 8 E. Warkentin and H. Bärnighausen, Z. Anorg. Allg. Chem., 459, 187 (1979).
- 9 E. Warkentin and H. Bärnighausen, Proc. 3rd European Crystallogr. Meeting, Zurich, 1976; E. Warkentin, Dissertation, Karlsruhe, 1977.
- 10 Th. Schleid and G. Meyer, Z. Anorg. Allg. Chem., in press.
- 11 G. Meyer and P. Ax, Mat. Res. Bull., 17, 1447 (1982).
- 12 G. Meyer, Inorg. Synth., 26, (1988).
- 13 J. D. Corbett, Inorg. Synth., 22, 15 (1983).
- 14 A. Simon, J. Appl. Crystallogr., 3, 11 (1970).
- 15 J. Soose, G. Meyer, 'SOS: Programme zur Auswertung von Guinier-Aufnahmen', Giessen, 1980.

- 16 G. M. Sheldrick, 'SHEL-X 76', program for crystal structure determination, Cambridge, U.K., 1976.
- 17 D. T. Cromer and J. B. Mann, Acta Crystallogr., Sect. A, 24, 321 (1968).
- 18 D. T. Cromer and D. Liberman, J. Chem. Phys., 53, 1891 (1970).
- 19 D. H. Current, C. L. Foiles and E. H. Carlson, *Phys. Rev.* B, 6, 737 (1972).
- 20 B. Morosin, J. Chem. Phys., 49, 3007 (1968).

- 21 W. Biltz, 'Raumchemie der festen Stoffe', L. Voss, Leipzig, 1934.
- 22 R. Hoppe, Adv. Fluorine Chem., 6, 387 (1970).
- 23 L. F. Druding, J. D. Corbett and B. N. Ramsey, *Inorg. Chem.*, 2, 869 (1963).
- 24 R. A. Sallach and J. D. Corbett, Inorg. Chem., 2, 457 (1963).
- 25 U. Löchner, H. Bärnighausen and J. D. Corbett, Inorg. Chem., 16, 2134 (1977).