Preparation and X-ray Powder Diffraction Study of the Pyrochlores CdLn(TiSb)O₇ (Ln = Nd, Gd, Yb) and Na_{0.5}Ln_{1.5}(TiSb)O₇ (Ln = Nd, Sm, Gd, Dy, Yb)*

J. A. ALONSO, E. MZAYEK, I. RASINES[†] and M. VENTANILLA

Instituto de Química Inorgánica 'Elhúyar', C.S.I.C., Serrano 113, E-28006 Madrid, Spain

Cubic non-deficient $A_2B_2O_7$ pyrochlores constitute a wide family of compounds whose crystal structure can be described in the space group $Fd\bar{3}m$, Z = 8. If the centre $(\bar{3}m)$ is chosen as origin, the large A cations occupy 16(c) positions (0, 0, 0); the smaller B cations are located at 16(d) $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$; and the oxygen atoms are in two kinds of positions: 8(a) (1/8, 1/8, 1/8); and 48(f), (x, 1/8, 1/8), with only one variable positional parameter, x.

The large variety of cations that are allowed to occupy the A and B positions explains the great number of known compounds of this structural type [1]. A or B positions are frequently occupied by two or more cations at random. In several cases this occurs for both A and B positions, the cations only having to satisfy the charge neutrality condition. Thus, compounds of stoichiometry $A^{II}A^{III}(B^{III}B^{VI})$. O_7 or $A^{II}A^{III}(B^{III}_{0.5}B^{V}_{1.5})O_7$ are known [2].

This work describes the preparation of two new families of pyrochlores, $A^{II}A^{III}(B^{IV}B^{V})O_7$ and $A_{0.5}{}^{II}A_{1.5}{}^{III}(B^{IV}B^{V})O_7$, and reports on their structural data.

Experimental

CdLn(TiSb)O₇ samples were prepared from stoichiometric mixtures of analytical grade CdO, Ln_2O_3 (Ln = Nd, Gd, Yb), TiO₂ and Sb₂O₃. As for $Na_{0.5}Ln_{1.5}$ (TiSb)O₇ samples, mixtures of Na_2CO_3 , Ln_2O_3 (Ln = Nd, Sm, Gd, Dy, Yb) were prepared using a slight excess (10%) of Na_2CO_3 , so as to offset the partial volatilization of the alkaline element. In every case the mixtures were ground and heated in air at 923, 1073 and 1274 K for 24 h each, and at final temperatures of 1523 K for the Cd compounds or 1393 K for those of Na, also for 24 h. After each thermal treatment the materials were quenched, weighed, ground and examined by X-ray diffraction.

Details of the analysis of the X-ray diffraction data and collection of intensities have been described elsewhere [3]. The calculation of the intensities for each compound was performed as indicated in ref. 3 for the values of the oxygen positional parameter x = 0.410, 0.411, ..., 0.430. The x value chosen was the one leading to a smallest discrepancy R factor between observed, I_o , and calculated, I_c , intensities,

 $R = \Sigma |I_0^{1/2} - I_c^{1/2}| / \Sigma I_0^{1/2}$ where $I_0 = kI'_0$, and $k = \Sigma I_c / \Sigma I_0$.

Results and Discussion

CdLn(TiSb)O₇ and Na_{0.5}Ln_{1.5}(TiSb)O₇ were obtained as pale coloured powders, yellow for the three Cd compounds, grey for that of Na/Nd and yellowish white for the remaining Na compounds. All of them gave good X-ray diffraction patterns, characteristic of cubic pyrochlores, space group $Fd\bar{3}m$ (No. 227), Z = 8. The unit-cell parameters are given in Table I.

In both families of compounds a regular decrease in the a values is observed when the mass of Ln

TABLE 1. Structural Data for the Pyrochlores CdLn(TiSb)O₇ and $Na_{0.5}Ln_{1.5}$ (TiSb)O₇ (Unit-cell parameters and M-O distances in Å)

A	a	x	R	A–O _o	A-Oo	B-Oo	B-Oc
CdNd	10.2916(2)	0.424	0.051	2.47	2.48	1.98	1.98
CdGd	10.2414(1)	0.423	0.037	2.45	2.46	1.97	1.98
CdYb	10.1617(3)	0.421	0.030	2.42	2.42	1.97	1.98
Na _{0.5} Nd _{1.5}	10.3332(3)	0.424	0.028	2.48	2.51	1.99	1.98
$Na_{0.5}Sm_{1.5}$	10.2597(3)	0.423	0.049	2.46	2.48	1.98	1.98
Na _{0.5} Gd _{1.5}	10.2467(4)	0.421	0.047	2.45	2.46	1.98	1.98
$Na_{0.5}Dy_{1.5}$	10.2151(1)	0.418	0.046	2.42	2.45	1.99	1.98
Nao.5 Yb1.5	10.1585(3)	0.416	0.035	2.40	2.41	1.99	1.98

0020-1693/87/\$3.50

© Elsevier Sequoia/Printed in Switzerland

^{*}Paper presented at the Second International Conference on the Basic and Applied Chemistry of f-Transition (Lanthanide and Actinide) and Related Elements (2nd ICLA), Lisbon, Portugal, April 6-10, 1987.

[†]Author to whom correspondence should be addressed.

increases. This correlates with the size diminution of the rare earth elements.

The best discrepancy R factors were obtained for Cd or Na and Ln randomly distributed; (1:1) or (1:3) at 16(c) positions; Ti and Sb occupying statistically 16(d) positions, and oxygen at 8(a) and 48(f), with the positional x parameters that are indicated in Table I, where final R factors are also included.

The observed distances $A-O_o$ and $B-O_o$ of Table I agree with those calculated for the sums of Shannon ionic radii [4], $A-O_c$ and $B-O_c$.

The gradual variation of the oxygen positional x parameter can be derived from the decrease of the A-O distances from Ln = Nd to Ln = Yb.

Acknowledgements

The authors acknowledge one fellowship (to J.A.A.) and the financial support of the Consejo Superior de Investagaciones Científicas, Spain.

References

- 1 M. A. Subramanian, G. Aravamudan and G. V. Subba Rao, Prog. Solid State Chem., 15, 55 (1983).
- 2 B. C. Chakoumakos, J. Solid State Chem., 53, 120 (1984).
- 3 J. A. Alonso, C. Cascales and I. Rasines, Z. Anorg. Allg. Chem., 573, 213 (1986).
- 4 R. D. Shannon, Acta Crystallogr., Sect. A, 32, 751 (1976).