A Multinuclear NMR Study of the Coordination of Uranyl Oxo-cations by Adenine Nucleotides*

M. MARGARIDA C. A. CASTRO and CARLOS F. G. C. GERALDES[†]

Chemistry Department, University of Coimbra, 3000 Coimbra, Portugal

The biological importance of the interaction of metal ions with nucleic acids justifies a systematic study of complex formation between nucleotides and oxo-cations which show a tendency to polymerize in aqueous solution. Multinuclear NMR spectroscopy has been shown to be useful in characterizing the interaction of Mo(VI) oxo-cations with adenine nucleotides [1]. Similar studies using the uranyl oxo-cation [2-4] show evidence of various complexes between uranyl and the nucleotides 5'-AMP, ADP and ATP in D₂O solution in the pH range of 7-11. In this work we report a more thorough structural characterization of these systems, studying complexation as a function of pH, total concentration and metal-to-ligand (M/L) ratio, using proton, ³¹P and ¹³C NMR spectroscopy.

Experimental

AMP, ADP, ATP, deuterated solvents and uranyl nitrate were obtained from Sigma Chemical Co., Ltd. and from Merck. Proton ³¹P and ¹³C NMR spectra were obtained in deuterium oxide solutions at 22 ± 1 °C using a Varian XL-200 NMR spectrometer. Most of the ³¹P and ¹³C spectra were broad-band proton decoupled. DSS, trimethylphosphate and dioxane were used as internal references for the proton, ³¹P and ¹³C spectra, respectively.

Results and Discussion

U(VI)-AMP System

Figure 1 illustrates the spectra of U(VI)/AMP solutions at various pH values (7.9 to 11.4) and M/L ratios. At pH > 9.5 we observe signals from free AMP and up to three complexes (M1, M2, M3) in different populations, depending on the M/L ratio. While only free AMP and M1 are present for M/L \leq 1, complexes M2 and M3 are also present when M/L > 1. The complex M1 is a sandwich-type (ST) complex [2] of 2:2 stoichiometry, where U(VI) is bound to the C-2' and C-3' ribose hydroxyl and the phosphate groups. This structure is justified by the observed complexation shifts, especially those of the C-13 ribose nuclei (Table I). The complexes M2 and M3 are also ST complexes of stoichiometry 4:2 formed by dis-

Nucleus	pH > 9.5		pH < 9.5	
	Mi	M ₂	M 3	Non-ST complexes (e.g. M ₄ , M ₅)
H ₈	0.32	0.44	0.35	0.32;0.38;0.47
H ₂	0.16	0.22	0.22	0.18; 0.21; 0.24
H1'	0.02	0.41	0.17	0.18; 0.36
H ₂ '	3.00	3.39	a	a
H ₃ '	0.72	а	a	0.6
H4'	2.26	2.35	2.23	2.16; 2.28; 2.31
H5',"	1.01;0.24	a	a	1.08; 0.15
³¹ P		5.2 ^b		5.75; 5.02; 4.84; 3.85; 2.95
C ₈	0	c	c	8
C ₆	-0.08			
C ₅	0			
C4	0			
C ₂	0			
C1'	4.50			
C2'	10.64			
C3'	14.08			
C4'	4.66			
Cs'."	-0.60			0.64

TABLE I. Complexation Chemical Shifts Induced by U(VI) Binding to AMP, $\Delta\delta$ (ppm)

^aNot observed. ^bIt was not possible to distinguish the complexes M_1 , M_2 and M_3 through ³¹P data. ^cIt was not possible to distinguish the M_1 , M_2 , M_3 complexes through ¹³C spectra.

^{*}Paper presented at the Second International Conference on the Basic and Applied Chemistry of f-Transition (Lanthanide and Actinide) and Related Elements (2nd ICLA), Lisbon, Portugal, April 6-10, 1987.

[†]Author to whom correspondence should be addressed.

378

proportionation of the M1 complex [2], which also yields free nucleotide. It was not possible to distinguish the three complexes by ${}^{31}P$ and ${}^{13}C$ NMR spectroscopy.

At pH < 9.5, gradual protonation of the hydroxyl groups at C-2' and C-3' of the ribose ring leads to formation of non-ST complexes involving interaction of U(VI) exclusively with the phosphate group (M5) and mixed complexes involving partial coordination to the hydroxyl groups (M4). Multiple proton and ³¹P signals are thus observed (Fig. 1).

U(VI)-ADP System

The proton and ³¹P spectra of U(VI)/ADP solutions obtained at various pH values (pH 7 to 11) and M/L ratios (1:2 to 2:1) show that at pH > 9.5 there is free ADP and up to four complexes (D1 to D4) in different populations depending on the M/L ratios. Their populations are, however, almost negligible for M/L < 1, indicating that these complexes have stoichiometries of 1:1 or higher in the metal. The values of the complexation shifts (Table II) show that these are ST complexes where U(VI) binds to the phosphate groups (P_{α} and P_{β}) and the ribose C-2'-OH and C-3'-OH groups, very similarly to U(VI)/AMP complexes, M1, M2 and M3. These complexes probably have stoichiometries of 2:2 and 4:2 and various structures are possible [3, 4].

The ³¹P complexation shifts of bound ADP change quite dramatically from pH > 9.5 to pH < 9.5

(see Table II). Taking into account the known dependence of ³¹P chemical shifts on the torsion angles of the phosphate groups [5], this observation is compatible with a conformational change of the phosphate moiety between ST and non-ST (e.g., D4, D5) complexes, due to a changed involvement of the ribose in U(VI) binding.

U(VI)-ATP System

Proton spectra (Fig. 2) show that at $pH \sim 10$ and $M/L \le 1$ there is free ATP together with two complexes, T1 and T2; for M/L > 1 another four complexes (T3 to T6), with small populations are seen. Although difficult to characterize, they are probably polymerized forms with higher M/L stoichiometries. The most abundant complexes, T1 and T2, are of the ST type, with binding sites at C-2'-OH, C-3'-OH, P_{β} and P_{γ} (see Table III) and stoichiometries 2:2 and 4:2 respectively [3, 4]. It was previously proposed [4] that at pH 10.5, 1:1 solutions, apart from U(VI)/-ATP complexes, also contain the U(VI)/AMP 2:2 complex M1, due to U(VI) induced hydrolysis of ATP to AMP and phosphate. However, our ³¹P spectra (Fig. 2d) show that these species are not present, and only the two complexed forms of ATP, T1 and T2, are observed under these conditions. At pH ~ 8 non-ST complexes of various stoichiometries predominate, with U(VI) binding directly to the ATP phosphate groups (see complexation shifts at Table III).

TABLE II. Complexation Chemical Shifts, $\Delta\delta$ (ppm), Induced by U(VI) Binding to ADP

Nucleus	pH > 9.5		pH < 9.5		
	D ₁	D ₂	D ₃	D ₄	Non-ST complexes (e.g. D ₅ , D ₆
H ₈	0.65	0.60	0.48	0.39	a
H ₂	0.20	0.20	0.17	0.16	
H ₁ ′	0.07	0.15	0.25	0.34	
H_2'	3.21	3.21	3.04	2.80	
H ₃ '	a	a	а	а	
H ₄ '	2.52	2.44	2.21	2.34	
H5',"	а	а	a	а	
Pa		1.8 ^b			4.74
P_{β}		5.4 ^b			3.71
C ₈	0.6	c	с	с	a
C ₆	0.4				
C ₅	0				
C ₄	0				
C ₂	0				
C1'	4.70				
C2'	11.20				
C ₃ '	14.31				
C4'	2.53				
C5''	0.5				

^aNot measured. ^bAverage value; it was not possible to distinguish perfectly the 4 complexes in the ³¹P spectra. ^cIt was not possible to distinguish D_2 , D_3 and D_4 complexes through ¹³C spectra.

TABLE III. Complexation Chemical Shifts, $\Delta\delta$ (ppm), Induced by U(VI) Binding to A
--

Nucleus	$pH \simeq 10$ ($pH \simeq 10 (pH > 9.5)$					pH ≃8 (pH < 9.5)
	T ₁	T2	T ₃	T ₄	T ₅	T ₆	Non-ST complexes (e.g. T_7, T_8)
H ₈	0.45	0.41	0.73	0.70	0.30	0.24	0.15;0.36;0.78
H ₂	0.16	0.15	0.22	0.25	а	а	0.03
H_1'	0.22	0.30	а	а	а	а	0.15
H_2'	2.83	3.28	3.40	а	а	а	1.65; 1.92
H_{3}'	0.50	0.48	а	а	a	а	0.3
Ha'	2.28	2.16	2.52	2.61	а	а	1.26:1.41
H5',"	a	a	a	a	а	а	0.48
Pα	0.23	0.46	b	ъ	b	b	0.24;0.48
P_{β}	4.06	4.47	b	b	ь	b	3.85; 4.09
P_{δ}	3.10	3.31	ь	ь	b	b	1.92; 3.19
C4	0	b	b	ь	b	b	a
C_2	0						
C_6	0.56						
C ₈	0.70						
C ₅	0						
C_1'	4.86						
C_2'	11.76						
C_3'	14.32						
C ₄ '	0.56						
C5',"	0						

^bIt was not possible to distinguish the various complexes through ¹³C or ³¹P spectra. ^aNot observed.

References

- 1 C. F. G. C. Geraldes and M. M. C. A. Castro, J. Inorg. Biochem., 28, 319 (1986).
 2 R. P. Agarwall and I. Feldman, J. Am. Chem. Soc., 90,
- 6635 (1968).
- 3 I. Feldman and K. E. Rich, J. Am. Chem. Soc., 92, 4559 (1970).
- 4 K. E. Rich, R. T. Agarwal and I. Feldman, J. Am. Chem. Soc., 92, 6818 (1970).
- 5 D. J. Gorenstein, J. B. Finley, R. K. Momii, B. A. Luxon and D. Kar, *Biochemistry*, 15, 3796 (1976).