Aluminium Chloride Induced Cleavage of Diphosphaferrocenes in Aromatic Hydrocarbons; the Synthesis of η^6 -Arene η^5 -Phosphacyclopentadienyl Iron(II) Cations

R. M. G. ROBERTS and A. S. WELLS

Department of Chemistry, University of Essex, Wivenhoe Park, Colchester CO 4 3SQ, Essex, U.K.

(Received July 28, 1986)

Abstract

The reactivity of a number of diphosphaferrocenes towards aluminium chloride in aromatic solvents has been investigated. Where the substrate contains a 2-acyl substituent, the ligand is cleaved and a η^6 -arene η^5 -phosphacyclopentadienyl iron(II) cation formed by reaction with the solvent. Two such novel cations have been isolated as their hexafluorophosphate salts and the π -bonded nature of both ligands demonstrated using NMR spectroscopy.

Introduction

Ferrocene is cleaved by aluminium trichloride in the presence of arenes to produce η^6 -arene η^5 -cyclopentadienyl iron(II) cations, e.g.

After hydrolysis, the cations are usually isolated as PF_6^- salts. Such reactions have been studied with many substituted ferrocenes and arenes, and have been the subject of several extensive review articles [1, 2]. To date, no η^6 , η^5 Fe(II) cations containing a group V hetero-atom in the η^6 -arene* or η^5 -Cp

ring have been reported. Some pyridines can act as η^6 ligands for Cr(CO)₃ [3] or Cr(PF₃)₃ [4, 5], and several neutral bis η^6 -phosphabenzene iron(II) derivatives have been reported [6]. The AlCl₃ catalysed cleavage of ferrocene by nitrogen-containing aromatics fails even in the cases of quinoline and isoquinoline [1], where a benzenoid ring is available for coordination.

 η^{5} -Cyclopentadienyl η^{5} -thiophen iron(II) cations are known [7, 8] but here the thiophen ligand is uncharged and thus replaces the η^{6} -arene ligand. The use of azaferrocene in the ligand exchange reaction has been reported to produce only η^{5} cyclopentadienyl products [9]. Diazaferrocene itself has not yet been synthesised. Much more accessible are diphosphaferrocenes largely due to the work of Mathey and co-workers [10–12].

We report here the synthesis of a new series of η^6 -arene η^5 -phosphacyclopentadienyl iron(II) derivatives from AlCl₃ catalysed cleavage of diphosphaferrocenes in the presence of aromatic hydrocarbons as a part of our study of the interaction of diphosphaferrocenes with Lewis and Brønsted acids.

Discussion and Results

We have investigated the AlCl₃ cleavage of the readily available 3,3'4,4'-tetramethyldiphosphaferrocene [11, 12] and its acyl derivatives [9].

 $R = R' = H = I; R = COCH_3, R' = H = II; R = COC_6H_5, R' = H = III; R = R' = COC_6H_5 = IV; R = R' = COC_6H_5 = V$

^{*}During the preparation of this paper the synthesis of a η^6 -phosphabenzene complex has been reported [23].

Initially we attempted to cleave the parent diphosphaferrocene (I) using the standard reaction conditions employed for ferrocene [1] [I, 1 equivalent (eq): Al powder: 1 eq: AlCl₃ 2 eq: benzene excess] however all attempts failed. I was rapidly and quantitatively removed from solution but regenerated after hydrolysis in >50% yield. The only ionic product obtained was a small amount of a pale purple paramagnetic compound which was assigned as the diphosphaferricinium hexafluorophosphate derivative of I on the basis of its IR spectrum. The compound proved to be too unstable to obtain satisfactory analytical data (the instability of phosphaferricinium cations has been demonstrated by cyclic voltammetry [13]). The exclusion of the Al powder did not alter the course of the reactions. The presence of a stoichiometric amount of water has been shown to catalyse the AlCl₃ cleavage of ferrocene [14] (yields increase from ~ 15 to 85%) but similar modifications did not produce any of the η^6 -arene cleavage product of I. For ferrocene derivatives, the reaction can be inhibited by polyalkyl substitution. Thus octa- and decamethyl ferrocene fail to react, whereas 1,1'3,3'tetraethylferrocene gives comparable yields to those using ferrocene [15] hence the four β methyl groups in I should not completely inhibit the reaction.

With ferrocene, the mechanism is believed to be the formation of a π complex with the AlCl₃ which results in the removal of a Cp⁻ ligand, the resulting CpFe⁺ unit reacting with the solvent to produce the η^6 -arene cation. The reaction is inhibited by the formation of an Fe bonded AlCl₃ adduct. We therefore suspect that I does not form the required π complex necessary for reaction but, instead, the metal bonded adduct, hydrolysis of which regenerates I.

Reactivity of Mono-acyl Derivatives II and III

Mono-acyl ferrocenes are cleaved by $AlCl_3$ in benzene to give products containing mainly the Cp-substituted ligand [16, 17];

Such reactions give better yields than ferrocene in the absence of catalytic amounts of H_2O . The initial reaction is coordination of the AlCl₃ to the keto function. This inhibits the removal of the substituted

R. M. G. Roberts and A. S. Wells

ring and lowers electron density on the iron atom preventing the formation of metal--metal bonded adducts [17]. In contrast to I, the mono-acyl derivatives II and III did react to give the desired products, but the distribution of products were quite different to those of acylferrocenes:

In both cases no η^{6} -arene cations were detected where the PCp ligand carried a 2-acyl substituent. **III** produced the product shown in 25% yield. **II** gave a much lower yield ~5% which was contaminated with a polymeric material and difficult to purify. The different product distribution reflects the weaker π PCp-metal bond compared to π Cpmetal [18]. With **II** and **III** coordination of AlCl₃ at the keto oxygen sufficiently weakens the ligandmetal bond for the acyl-substituted ligand to be thermally cleaved in preference to the unsubstituted ligand. An identical reaction of **III** in toluene produced the η^{6} -toluene analogue in 22% yield.

Reactivity of Diacyl Derivatives IV and V

The reactivity of IV paralleled that of diacetylferrocene. The latter is inert to AlCl₃ in refluxing benzene. At higher temperatures, no η^6/η^5 -cations are produced, but decomposition occurs liberating Fe(II) ions which produce bis η^6 -arene Fe(II) dications [17]. IV could be recovered in >80% yield from AlCl₃/benzene (4 h, 80 °C). No ionic products could be detected. With AlCl₃/mesitylene (4 h/ 180 °C) IV produced only $10 \rightarrow 20\%$ yield of bis mesitylene iron(II) hexafluorophosphate. Rather than use AlCl₃, we chose trifluoromethanesulphonic acid (CF₃SO₃H) as a catalyst. $I \rightarrow V$ can be protonated at the keto oxygen in acids of suitable strength [19]. However, refluxing V or 1,1'-dibenzoylferrocene in benzene produced no ionic products.

$^{13}C/^{31}P$ NMR of η^{6} -Benzene η^{5} -(3,4-Dimethyl)phospholyl Iron(II) Hexafluorophosphate

The π -bonded nature of both arene and PCp ligands is apparent from ¹³C and ³¹P NMR spectroscopy. δ ³¹P occurs at -49.0 ppm, a region characteristic of π -bonded PCp anions [20]. δ ³¹P occurs at ~35 ppm downfield from 3,4-dimethylmonophospha-

ferrocene [21] due to deshielding by the positive charge on the iron atom. ${}^{2}J(PH)$ values of 36 Hz are identical to those found in mono- and diphosphaferrocenes [11, 21]. For η^6 -benzene η^5 -cyclopentadienyl iron(II) hexafluorophosphate δ^{13} C for the Cp ring occurs at 75.63 ppm [22], ~10 ppm downfield from ferrocene. Similar downfield shifts are found here for C_{α} and C_{β} carbons of the PCp ligand, compared to 3,4-dimethylmonophosphaferrocene [21], 9.8 ppm for C_{α} and 13.12 ppm for C_{β} . ¹J and ²J(PC) values of 64 and 7 Hz respectively are also highly characteristic of η^5 -PCp anions [20]. In the Cp analogue, δ ¹³C arene occurs at 87.27 ppm [22], an upfield shift of ~41 ppm from uncomplexed benzene. Here the arene shift occurs at 90.87 ppm confirming that the benzene is acting as a η^6 -ligand. Similar comments apply to the η^6 toluene analogue, the only noteworthy difference is that $C_{2,6}$ and $C_{3,5}$ of the arene ring have identical shifts in the ¹³C NMR spectrum, whereas both are distinct in the Cp analogue [22].

The similarity of the chemical shifts and coupling constants to other η^5 -PCp systems shows that the geometry of the η^5 -PCp ligand in these novel cations must be very close to that found in other η^5 -PCp derivatives [20].

Relevant to this work is the recent publication by Nief and Fischer [23] on the synthesis of η^6 -2,4,6 triphenylphosphabenzene η^5 -cyclopentadienyl iron-(II) hexafluorophosphate. The desired η^6/η^5 cation was not isolated directly from the reaction of the phosphabenzene, ferrocene and AlCl₃. Hydrolysis occurred during work up to give a P(O)H species with the arene being bonded to Fe only via the five ring carbons in a η^5 -cyclohexadienyl configuration. The desired η^6/η^5 cation was produced via reduction with HSiCl₃ followed by hydride abstraction with trityl PF₆.

A major difference resulting from the P atom being in the η^5 ring is that no hydrolysis is found on work up. The reason for this is that it is much less favourable to form a six electron π system over four carbons than five.

Experimental

Diphosphaferrocenes $I \rightarrow IV$ were produced by literature methods [9, 10]. Aromatic solvents were dried over sodium wire, aluminium chloride (99%) was purchased from Aldrich Chemical Company. ¹H NMR spectra were obtained on a Varian EM 360, reference external TMS, ¹³C and ³¹P spectra were obtained on a Bruker WP80 [reference TMS and 85% H₃PO₄ respectively]. Microanalysis was done by the Analytical Department, University of Manchester. III (2 g, 5.2 mmol) and AlCl₃ (2.9 g, 20.8 mmol) were refluxed in dry benzene (275 ml) for 2 h. After cooling, the mixture was quenched with ice water (~75 ml) and the organic phase discarded. The yellow aqueous phase was filtered and washed with ether (2 × 75 ml) and refiltered. Aqueous HPF₆ (~5 mol, 65% w/v) was added. The product was extracted into CH₂Cl₂ (2 × 50 ml) which was dried and reduced in volume. The product was precipitated as a pale orange powder by the addition of ether. Yield, 0.5 g (25%). Anal. Found: C, 37.6; H, 3.6; Calc. for C₁₂-H₁₄FeP₂F₆: C, 36.9; H, 3.7%. ¹H NMR* 1.80(s) (6H) β Me, 3.95(d) (2H**), 5.85(s) (6H) C₆H₆. δ ³¹P* -49.0(c)**, -141.5, ¹J(PF) = 708. ¹³C NMR* 13.53 β Me, 88.00 C_d, ¹J(PC) = 64, 90.87 arene, 107.29 C_{β} ²J(PC) = 7.

η^6 -Toluene Analogue

The toluene analogue was produced by an identical procedure except that the reaction time was 0.5 h. Yield, 0.48 g (22%). Anal. Found: C, 40.1; H, 4.0; Calc. for C₁₃H₁₆FeP₂F₆; C, 39.6, H, 4.0%. ¹H NMR* 1.90(s) (6H) β Me, 2.08(s) (3H) Me, 4.40(d) (2H) α H, 6.00(s) (5H) arene. δ ³¹P* -43.9(t)**, -137.8, ¹J(PF) = 708. ¹³C NMR* 14.41 β Me, 20.20 Me, 88.16 C_{α} ¹J(PC) = 64.0, 89.52 C₄ arene, 90.24 C_{2,3,5,6} arene, 105.27 C₁ arene, 106.33 C_{β}²J(PC) = 7.

References

- 1 D. Astruc, Tetrahedron, 39, 4027 (1983).
- 2 R. G. Sutherland, J. Organomet. Chem. Lib., 311 (1977).
- 3 H. G. Biedermann, K. Öfele, N. Schuhbauer and J. Tajlelbaum, Angew. Chem., Int. Ed. Engl., 14, 639 (1975).
- 4 P. L. Timms, Angew. Chem., 87, 295 (1975).
- 5 P. L. Timms, Angew. Chem. Int. Ed. Engl., 14, 273 (1975).
- 6 G. Märkl and C. Martin, Angew. Chem. Int. Ed. Engl., 13 (6), 408 (1974).
- 7 P. Bachmann and H. Singer, Z. Naturforsch., Teil B, 31, 325 (1976).
- 8 C. C. Lee, M. Iqbal, U. S. Gill and R. G. Sutherland, J. Organometal. Chem., 288, 89 (1985).
- 9 A. Efraty and N. Jurban, *Inorg. Chim. Acta*, 44, L191 (1980).
- 10 G. De Lauzon, F. Mathey and M. Simalty, J. Organometal. Chem., 156, C2 (1978).
- 11 G. De Lauzon, B. Deschamps, J. Fischer, F. Mathey and A. Mitschler, J. Am. Chem. Soc., 102, 994 (1980).
- 12 European Patent 53.987 (SNPE 16/6/82) to G. De Lauzon and F. Mathey; Chem. Abstr., 98, 16858v.
- 13 P. Lemoine, M. Gross, P. Braunstein, F. Mathey, B. Deschamps and J. H. Nelson, *Organometallics*, 3, 1303 (1984).

^{*}Solvent acetone d₆.

^{**} ${}^{2}J(PH) \sim 37$, δ in ppm J in Hz. Both cations show no defined MP and darken above 200 °C.

- 14 A. N. Nesmeyanov, N. A. Vol'kenau and V. A. Petrakova, Izv. Akad. Nauk. Ser. Khim., 9, 2159 (19740.
- 15 D. Astruc and R. Dabard, Bull. Soc. Chim. Evana, 2571 (1975).
- 16 D. Astruc, Tetrahedron Lett., 36, 3437 (1973).
- 17 D. Astruc and R. Dabard, Tetrahedron, 32, 245 (1976).
- 18 O. Poifat and C. Sourisseau, J. Organometal. Chem., 213, 461 (1981).
- 19 R. M. G. Roberts and A. S. Wells, Inorg. Chim. Acta, 119, 171 (1986).
- 20 F. Mathey, J. Fischer and J. H. Nelson, Struct. Bonding (Berlin), 55, 154 (1983).
- 21 F. Mathey, J. Organometal. Chem., 139, 77 (1977).
- 22 B. R. Steele, R. G. Sutherland and C. C. Lee, J. Chem. Soc., Dalton Trans., 529 (1981).
- 23 F. Nief and J. Fischer, Organometallics, 5, 877 (1986).