³¹P and ¹¹⁹Sn NMR Spectra of Complexes of Diphenyltin(IV)dichloride with Tri(n-octyl)phosphine Oxide

ANTONÍN LYČKA

Research Institute of Organic Syntheses, 532 18 Pardubice-Rybitví, Czechoslovakia

and JAROSLAV HOLEČEK

General and Inorganic Chemistry Department, Institute of Chemical Technology, 532 10 Pardubice, Czechoslovakia

(Received April 14, 1986)

Abstract

The ³¹P and ¹¹⁹Sn NMR spectra of the system diphenyltin(IV)-dichloride-tri(n-octyl)phosphine oxide, deuteriochloroform, were studied. The existence of the compound $Ph_2SnCl_2 \cdot L$ ($L = (n-C_8H_{17})_3PO$) and five isomers of the compound $Ph_2SnCl_2 \cdot 2L$ was revealed.

Introduction

During the study of ¹¹⁹Sn NMR spectra of 1:1 adducts of Ph₂SnX₂ (X = Cl or Br) with Bu₃PO in dichloromethane solutions, Colton and Dakternieks [1] observed only simple signals due to a rapid intermolecular exchange at room temperature. But at temperatures below -60 °C this intermolecular exchange of Bu₃PO is sufficiently slowed, and thus in both the diphenyltin(IV) dihalides it is possible to observe well resolved doublets. This splitting makes it possible to determine coupling constants ²J-(¹¹⁹Sn³¹P) and to identify the composition of the complexes formed in these systems. In the mixture of Ph_2SnCl_2 with Ph_2SnBr_2 and Bu_3PO (1:1:2) at -100 °C there were found both adducts of Ph_2SnX_2 • Bu_3PO and also two isomers of $Ph_2SnClBr•Bu_3PO$. The formation of these isomers was thought to be a result of the Berry pseudorotation of these structurally flexible organotin complexes.

During the continuation of our investigation of organotin(IV) compounds and their complexes we studied the temperature dependences of ³¹P and ¹¹⁹Sn NMR characteristics of a similar system, *i.e.* diphenyltin(IV) dichloride-tris(n-octyl)phosphine oxide (L) in a solution of the mixture of dichloromethane and dideuteriodichloromethane (70:30 ν/ν) using the molar ratio of Ph₂SnCl₂:L equal to 1:1, 1:2 and 1:3, respectively. The parameters obtained for ³¹P and ¹¹⁹Sn NMR characteristics are given in Table I.

The behaviour of the system with the molar ratio of $Ph_2SnCl_2:L = 1:1$ is analogous to those described by Colton and Dakternieks [1]. The characteristic pattern of signals in ³¹P and ¹¹⁹Sn NMR spectra at 300 K gives evidence of a rapid intermolecular exchange of ligands. At 190 K it is possible to observe a well resolved doublet in ¹¹⁹Sn NMR spectra and a

Compound	Temperature (K)	δ(³¹ P) ^a (ppm)	δ (¹¹⁹ Sn) ^b (ppm)	² J(¹¹⁹ Sn ³¹ P) ^c (Hz)
	300	48.0		
Ph ₂ SnCl ₂ •L	300	61.6	-252^{d}	
	190	63.6	-279	158
Ph ₂ SnCl ₂ •2L	300	58.0	-390 ^e	
	240	61.0 ^f		
	190	59.9 (~50%)	-477	170
		62.7 (~40%)	-472	179
		63.8 (~8%)	g	187
		66.0 (~1%)	g	g
		66.8 (~1%)	g	g

 ${}^{a}\delta({}^{31}P)$ referred to external 85% aqueous phosphoric acid. ${}^{b}\delta({}^{119}Sn)$ referred to external neat Sn(CH₃)₄. ${}^{c}\pm 1$ Hz. ${}^{d}B$ road signal. ${}^{e}Very$ broad signal. ${}^{f}w_{1/2} \sim 50$ Hz. ${}^{g}Not$ found.

0020-1693/86/\$3.50

© Elsevier Sequoia/Printed in Switzerland

signal with satellites caused by the Sn–P interaction $({}^{2}J({}^{119}Sn{}^{31}P) = 158 Hz)$ in ${}^{31}P$ spectra. With decreasing temperature $\delta({}^{119}Sn)$ is shifted upfield, while $\delta({}^{31}P)$ is shifted downfield. This is in agreement with the idea of the increasing bond interaction Sn \leftarrow OP. We assume the splitting of the signal in ${}^{119}Sn$ NMR spectra into a doublet to be sufficient evidence for the composition of the complex to be described by the formula Ph₂SnCl₂·L and for the composition of compounds studied in ref.1 as well.

In ³¹P NMR spectra of the system with the molar ratio Ph₂SnCl₂:L = 1:2 at room temperature, it is also possible to observe only one signal corresponding to a rapid ligand exchange on the NMR time scale. The signal becomes broader with decreasing temperature and simultaneously the values of $\delta(^{31}P)$ are shifted downfield. At temperatures under 210 K we can observe five signals in ³¹P NMR spectra (Table I), three of them having the appropriate satellites caused by the Sn-P interaction which makes it possible to determine the values of $^2J(^{119}Sn^{31}P)$ (Fig. 1). We assume that the occurrence of five signals in ³¹P NMR spectra could be ascribed to the formation of the following five isomers of Ph₂SnCl₂·2L (vide infra).

Fig. 1. ³¹P NMR spectrum of Ph₂SnCl₂•2L at 190 K measured at 40.32 MHz.

An unambiguous assignment of the observed signals to the above isomers is not possible in a simple way due to the limited amount of the information obtained. We assume that the most intensive signals can be ascribed to the most probable [2, 3] and most frequent [4–6] *trans*-diorganyltin(IV) isomers (isomers A and B above). Two observed triplets in ¹¹⁹Sn NMR spectra of this system at 190 K (Fig. 2.) also correspond to these isomers. The

Fig. 2. ¹¹⁹Sn NMR spectrum of Ph₂CnCl₂·2L at 190 K measured at 37.14 MHz.

splitting of signals in ¹¹⁹Sn NMR spectra into triplets gives evidence of the composition of the Ph₂SnCl₂·2L adduct and the values of δ (¹¹⁹Sn) confirm the octahedral coordination of the central tin atom in the most frequent isomers [7]. Further three expected triplets in ¹¹⁹Sn NMR spectrum were not observed because of low abundance.

In ³¹P NMR spectra of the system with molar ratio Ph₂SnCl₂:L = 1:3 at 190 K similar signals as in the previous system with 1:2 molar ratio were found, having (within experimental error), the same $\delta(^{31}P)$ and relative intensities and only one additional signal at 48.1 ppm corresponding to a free ligand L (Table I). This observation is very valuable, indicating that the surplus of ligand L above the molar ratio 1:2 does not affect the composition of adducts in the solution. Simultaneously, it gives evidence for a sufficiently slow exchange of ligands on the NMR time scale at these experimental conditions. It is also evidence that the low-intensity signals in ³¹P NMR spectra can be ascribed to the presence of a hexacoordinate central tin atom in Ph₂SnCl₂·2L adducts.

The determination of multiplicity of signals in ¹¹⁹Sn NMR spectra affords valuable information on the composition and structure of organotin(IV) complexes with ligands containing a phosphorus atom in the neighbourhood of the donor center. On the other hand, the coupling constants ${}^{2}J({}^{119}Sn {}^{31}P)$ can be obtained more easily and precisely from the ${}^{31}P$ NMR spectra.

References

- 1 R. Colton and D. Dakternieks, Inorg. Chim. Acta, 102, L17 (1985).
- 2 R. Okawara and M. Wada, Adv. Organomet. Chem., 5, 144 (1967).
- 3 A. G. Davies and P. J. Smith, Adv. Inorg. Chem. Radiochem., 23, 28 (1980).
- V. G. Kumar Das, Y. C. Keong and P. J. Smith, J. Organomet. Chem., 291, C17 (1985).
 J. Z. Zubieta and J. J. Zuckerman, Prog. Inorg. Chem.,
- 24, 251 (1978).
- 6 P. J. Smith, J. Organomet. Chem. Libr., 12, 97 (1981).
 7 J. Otera, J. Organomet. Chem., 221, 57 (1981).