Tris(pentachlorophenyl) Gold(III) complexes

RAFAEL USÓN, ANTONIO LAGUNA

Departamento de Química Inorgánica, Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza-Consejo Superior de Investigaciones Científicas, 50009 Saragossa, Spain

and M. DOLORES VILLACAMPA

Colegio Universitario de La Rioja, Logroño, Spain

(Received June 12, 1986)

Abstract

By reaction of $Tl(C_6Cl_5)_2Cl$ with $Au(C_6Cl_5)(tht)$ (tht = tetrahydrothiophen) or $[N(PPh_3)_2][Au(C_6-Cl_5)Cl]$ the gold(III) complexes $[Au(C_6Cl_5)_3(tht)]$ or $[N(PPh_3)_2][Au(C_6Cl_5)_3Cl]$ respectively, can be prepared. They are the first tris(pentachlorophenyl)gold(III) complexes to be reported. The ready displacement of tht by other neutral or anionic ligands leads to the synthesis of $Au(C_6Cl_5)_3(Ph_2PCH_2PPh_2)$ or $Q[Au(C_6Cl_5)_3X]$ (Q = N(PPh_3)_2, PPh_3Me or PPh_2Me_2; X = C_6F_5, SCN, Br or I).

Introduction

During recent years less attention has been dedicated to the synthesis and study of gold(I) and gold(III) pentachlorophenyl derivatives than to the pentafluorophenyl analogues [1, 2]. So far, no gold compound containing more than two C₆Cl₅ groups [3, 4] has been reported, whilst tri- and tetrakispentafluorophenyl gold derivatives have recently been described [5].

In this paper we report the synthesis of $Au(C_6Cl_5)_3(tht)$ (tht = tetrahydrothiophen), which can be used for the preparation of other neutral or anionic triaryl derivatives, such as $Au(C_6Cl_5)_3(dppm)$ (dppm = $Ph_2PCH_2PPh_2$) or $[Au(C_6Cl_5)_3X]^-$ (X = Cl, Br, I, SCN, C_6F_5).

Experimental

Instrumentation and general experimental techniques were as described earlier [4]. ³¹P NMR spectra (H₃PO₄ as external reference) were recorded on a Varian XL200 spectrometer in CDCl₃. The yields, melting points, C, H, N and Au analyses, conductivities and molecular weights of the novel complexes are listed in Table I.

Preparation of the Complexes

$Au(C_6Cl_5)_3(tht)(1)$

To a solution of $Au(C_6Cl_5)(tht)$ [4] (0.452 g, 1 mmol) in 50 ml of toluene was added $Tl(C_6Cl_5)_2$ -Cl [6] (0.738 g, 1 mmol) and the mixture was refluxed for 2 h. After removal of the precipitated TlCl the yellow solution was evaporated to dryness and the resulting complex 1 was recrystallized from diethylether-hexane.

$[N(PPh_3)_2][Au(C_6Cl_5)_3Cl] (2)$

Addition of $Tl(C_6Cl_5)_2Cl$ [6] (0.148 g, 0.2 mmol) to a solution of $[N(PPh_3)_2][Au(C_6Cl_5)Cl]$ [4] (0.188 g, 0.2 mmol) in 30 ml of dichloromethane led (after a few seconds) to a yellow coloured liquid. The mixture was stirred at room temperature for 10 h, and the precipitated TlCl was filtered off. Concentration of the filtrate to *ca*. 3 ml and subsequent slow addition of diethylether (20 ml) led to crystallization of complex 2.

$[N(PPh_3)_2][Au(C_6Cl_5)_3(C_6F_5)](3)$

To a freshly prepared diethylether solution (30 ml of $Ag(C_6F_5)$ [7] (0.4 mmol) was added 2 (0.608 g, 0.4 mmol). The mixture was stirred at room temperature for 90 min. After filtering off the AgCl the solution was concentrated to 5 ml. Addition of hexane (20 ml) led to the precipitation of 3.

$Au(C_6Cl_5)_3(dppm)(4)$

A solution of 1 (0.206 g, 0.2 mmol) and bis-(diphenylphosphino)methane (dppm) (0.076 g, 0.2 mmol) in 30 ml of dichloromethane was stirred at room temperature for 1 h. Concentration to *ca.* 5 ml and addition of hexane (20 ml) led to the precipitation of 4.

 $Q[Au(C_6Cl_5)_3X] \quad Q = N(PPh_3)_2, \quad X = Cl \quad (2) \text{ or } SCN \quad (5); \quad Q = PPh_3Me, \quad X = Br \quad (6) \text{ or } Q = PPh_2-Me_2, \quad X = I(7)$

To a solution of 1 (0.206 g, 0.2 mmol) in 30 ml of dichloromethane was added $[N(PPh_3)_2]Cl$ (0.115 g,

TABLE I. Analytical Data for Complexes

Complex	Yield (%)	Analysis, found (calc.) (%)				Λ_M^a	Molecular weight ^b	Melting point
		С	Н	N	Au		found (calc.)	(°C)
Au(C ₆ Cl ₅) ₃ (tht) (1)	71	25.4 (25.6)	1. 2 (0.8)		19.4 (19.05)	8	993 (1033)	150(d)
$[N(PPh_3)_2][Au(C_6Cl_5)_3Cl](2)$	68	41.85 (42.7)	2.1 (2.0)	0.95 (0.9)	13.45 (12.95)	102		145(d)
$[N(PPh_3)_2][Au(C_6Cl_5)_3(C_6F_5)]$ (3)	80	43.5 (43.65)	2.3 (1.85)	1.15 (0.85)	12.2 (11.95)	90		175
$Au(C_6Cl_5)_3$ (dppm) (4)	60	38.6 (38.85)	1.1 (1.65)		15.1 (14.8)	4	1250 (1329)	156
$[N(PPh_3)_2][Au(C_6Cl_5)_3SCN] (5)$	60	42.45 (42.85)	2.15 (1.95)	1.35 (1.8)	12.4 (12.8)	93		70
$[PPh_{3}Me][Au(C_{6}Cl_{5})_{3}Br] (6)$	78	34.7 (34.15)	1.9 (1.4)		14.7 (15.1)	100		100(d)
$[PPh_2Me_2][Au(C_6Cl_5)_3I] (7)$	75	29.8 (29.85)	1.65 (1.25)		15.75 (15.3)	101		114

^aIn acetone ($ohm^{-1} cm^2 mol^{-1}$). ^bIn chloroform.

0.2 mmol), $[N(PPh_3)_2]SCN$ (0.119 g, 0.2 mmol), $[PPh_3Me]Br$ (0.071 g, 0.2 mmol) or $[PPh_2Me_2]I$ (0.068 g, 0.2 mmol). The mixture was stirred at room temperature for 1 h. The solution was evaporated to *ca*. 5 ml and hexane was added to precipitate a white solid of 2, 5, 6 or 7.

Results and Discussion

 $Tl(C_6Cl_5)_2Cl$ [6] adds oxidatively to gold(I) derivatives, both neutral Au(C_6Cl_5)(tht) (eqn. (1)) or anionic [N(PPh_3)_2][Au(C_6Cl_5)Cl] (eqn. (2)), the two pentachlorophenyl groups being transferred to the gold(I) centre which thereby is oxidised to gold(III)

 $Au(C_6Cl_5)(tht) + Tl(C_6Cl_5)_2Cl \longrightarrow$ $Au(C_6Cl_5)_3(tht) + TlCl \qquad (1)$ 1

 $[N(PPh_3)_2][Au(C_6Cl_5)Cl] + Tl(C_6Cl_5)_2Cl \longrightarrow$

$$[N(PPh_{3})_{2}][Au(C_{6}Cl_{5})_{3}Cl] + TlCl$$
(2)
2

No substitution processes leading to other gold(I) compounds, as reported by the reaction of the thallium derivative with AuCl(PPh₃), could be observed [3].

Complexes 1 and 2 are white air- and moisturestable solids at room temperature. Acetone solutions of 1 are non-conducting, solutions of 2 behave as 1:1electrolytes. The molecular weight of 1 (isopiestic, in chloroform) is that expected for a monomeric complex. The IR spectra show the absorptions due to the C_6Cl_5 groups [8] at *ca.* 1330(s), 1300(s), 845(m) and 685(s) cm⁻¹. Moreover, in the spectrum of 2 the vibration due to $\nu(Au-Cl)$ appears [9] at 320(m) cm⁻¹.

Attempts to introduce a fourth C_6Cl_5 group have failed. Neither the (1:1) reaction between $[N(PPh_3)_2][Au(C_6Cl_5)_3Cl]$ and AgC_6Cl_5 at room temperature nor refluxing of toluene solutions of $[NBu_4][Au(C_6Cl_5)_2]$ and $Tl(C_6Cl_5)_2Cl$ has led to the synthesis of $[Au(C_6Cl_5)_4]^-$, as is the case for the pentafluorophenyl derivatives [5]. In the first case, a mixture of the unreacted gold complex and the gold(I) anion $[Au(C_6Cl_5)_2]^-$ was obtained; in the second case, no reaction took place. Notwithstanding, a mixed tetra-aryl aurate(III) (3) can be obtained by arylating $[Au(C_6Cl_5)_3Cl]^-$ with AgC_6F_5 . In this reaction (eqn. (3)) no formation of reduction products containing gold(I) can be observed

$$[N(PPh_3)_2][Au(C_6Cl_5)_3Cl] + AgC_6F_5 \longrightarrow$$
$$[N(PPh_3)_2][Au(C_6Cl_5)_3(C_6F_5)] + AgCl \qquad (3)$$

Complex 3 is a white solid and a 1:1 electrolyte in acetone solution (Table I).

The neutral ligand tht in complex 1 can readily be displaced by other neutral dppm = bis(diphenylphosphino)methane or anionic ligands (eqns. (4), (5))

$$Au(C_6Cl_5)_3(tht) + dppm \longrightarrow$$

$$Au(C_6Cl_5)_3(dppm) + tht$$
(4)

Tris(pentachlorophenyl) Au(III) Complexes

$$Au(C_6Cl_5)_3(tht) + QX \longrightarrow$$

$$Q[Au(C_6Cl_5)_3X] + tht$$
(5)

 $Q = N(PPh_3)_2$, X = C1 (2) or SCN (5); $Q = PPh_3Me$, X = Br (6); $Q = PPh_2Me_2$, X = I (7).

Complexes 4-7 are white, air and moisture stable solids. Complex 4 is a non-electrolyte and monomeric in CHCl₃ solution. Its ³¹P NMR spectrum is similar to that observed for $Au(C_6F_5)_3$ (dppm) [5] and, shows two doublets at $\delta = -26.49$ and $\delta = 21.67$ ppm., the former corresponding to the gold-bonded P atom, the second to the uncoordinated P atom [10, 11]. Complexes 5-7 behave as 1:1 electrolytes in acetone solution. The vibration due to $\nu(C=N)$ appears at 2120(m) cm⁻¹ in the IR spectrum of complex 5, close to that observed [5] in the spectra of [PPh₃Bz] $[Au(C_6F_5)_3(SCN)]$ (2125 cm⁻¹) and $[N(PPh_3)_2]$ -[Au(C₆F₅)₃(SCN)] (2135 cm⁻¹), suggesting that the SCN group is S-bonded. The $\nu(Au-Br)$ (complex 6) or $\nu(Au-I)$ (complex 7) are not observed, most probably they lay below the lower limit of our apparatus (200 cm^{-1}).

References

- 1 R.Usón, A. Laguna and J. Vicente, Synth. React. Inorg. Met.-Org. Chem., 7, 463 (1977).
- 2 R. Usón and A. Laguna, Coord. Chem. Rev., 70, 1 (1986).
- 3 P. Royo and R. Serrano, J. Organomet. Chem., 144, 33 1978.
- 4 R. Usón, A. Laguna, M. U. de la Orden and M. L. Arrese, Synth. React. Inorg. Met.-Org. Chem., 14, 369 (1984).
- 5 R. Usón, A. Laguna, M. Laguna, E. Fernández, P. G. Jones and G. M. Sheldrick, J. Chem. Soc., Dalton Trans., 1971 (1982).
- 6 P. Royo and R. Serrano, J. Organomet. Chem., 136, 309 (1977).
- 7 R. Usón, A. Laguna and J. A. Abad, J. Organomet. Chem., 246, 341 (1983).
- 8 J. Casabo, J. M. Coronas and J. Sales, Inorg. Chim. Acta, 11, 5 (1975).
- 9 R. Usón, A. Laguna and J. Vicente, Rev. Acad. Cienc. Exactas Fis. Quím. Nat. Zaragoza, 31, 211 (1976).
- 10 E. E. Isaac and W. A. G. Graham, Inorg. Chem., 14, 2560 (1975).
- 11 S. O. Grim, W. L. Brigs, R. C. Barth, C. A. Tolman and J. P. Jesson, *Inorg. Chem.*, 13, 1095 (1974).