NMR Spectra of Uranyl Complexes having Substituted Beta-diketonate Ligands

D. T. HAWORTH

Chemistry Department, Marquette University, Milwaukee, Wis. 53233, U S. A.

and M. DAS*

School of Chemistry, University of New South Wales, *Kensington, N.S. W. 2033, Australia*

Received March 16, 1985

Recently we have reported on the synthesis and characterization of a number of four-coordinate palladium and beryllium, six-coordinate aluminum, gallium, indium and scandium and eight-coordinate zirconium chelates having unsymmetrical substituted beta-diketonate ligands $[1-6]$. The four-coordinate palladium chelates are square planar and they exist as *cis* and *trans* isomers. The beryllium complexes are tetrahedral and dissymmetric. The zirconium complexes are of a square antiprism geometry.

We now report on the synthesis and characterization of twelve bis(ß-diketonate)uranyl chelates, $UO₂L₂$ solvent, where L is RCOCHCOR' and the solvent is ethanol or water.

Experimental

The uranyl complexes were prepared by our previously published method [7]. Analytical data for the four uranyl complexes not previously reported are presented in Table **1** (Galbraith Laboratories, Inc.).

The NMR spectra were recorded in CDCl₃ and $CD₃CN$ with ^{1}H , ^{13}C and ^{19}F spectra taken on a JEOL-FX60Q NMR Spectrometer. The 'H and 13C chemical shifts are referenced to TMS and 19 F chemical shifts used CFC1₃ as the internal standard. The carbon resonances of the C_2F_5 and C_3F_7 group were determined using the fluorine noise decoupling technique, ${}^{13}C[{^{19}F}]$, described elsewhere [3].

Results and Discussion

Table II presents ¹³C NMR chemical shift and coupling constant data for the carbonyl and methine carbons of the beta-diketonate ring. Several observations are apparent from these data. The methine carbon is more shielded for fluorine containing R' groups and as the fluorine content of this substituent increases some deshielding of this carbon resonance occurs (electronic effect). The effect of the electron releasing CH_3 groups versus the electron withdrawing CF_3 group is shown by the methine carbon resonance of $UO₂(CH₃COCHCOCH₃)₂$, 104.3 ppm versus $UO₂(CH₃COCHCF₃)₂$, 101.0 ppm. When R' contains fluorine, the CHF₂ groups gives a more R'-C-O deshielded carbon resonance than the R' group CF_3 , C_2F_5 or C_3F_7 . A more distinguishable trend is seen in the shielding of the R-C-O carbon resonance when R' contains fluorine: $2'$ -furyl > $2'$ -thienyl $>$ aryl $>$ methyl.

The carbon resonances of the C_2F_5 and C_3F_7 as given in the experimental were obtained by the 13 C ${^{19}F}$ technique [3]. By this technique the C-H resonances for $UO₂(C₄H₃SCOCHCOC₂F₅)₂ C₂H₅OH$ and $UO_2(C_4H_3SCOCHCOC_3F_7)_2 \cdot C_2H_5OH$ were recorded at 97.6 ppm $(^1J_{\text{C-H}}$ 164.1 Hz) and 97.7 ppm ($J_{\text{C-H}}$ 165.0 Hz), respectively.

It is interesting to note that those seven-coordinate uranium complexes can be added to the geometry relationship established for our ^{13}C NMR chemical shift data in perfluorinated β -diketonate complexes. A comparison of the identical ligand for

TABLE I. Analytical Data for some $UO_2(RCOCHCOR')_2$ *Solvent Chelates.

R	\mathbf{R}'	Solvent	M.P. (°C)	Calc. $(\%)$			Found $(\%)$		
					H	U	C	н	U
C_6H_5	CHF ₂	H ₂ O	$176 - 8^a$	35.20	2.36	34.90	35.22	2.42	35.06
C_6H_5	CH ₃	C ₂ H ₅ OH	$251 - 2^a$	41.39	3.79	37.30	41.47	3.90	37.49
C_6H_5	C_6H_5	C ₂ H ₅ OH	$264 - 6$	50.39	3.70	31.23	50.32	3.77	31.36
$2′$ -C ₄ H ₃ S	CHF ₂	C ₂ H ₅ OH	$164 - 166^a$	29.92	2.23	32.96	29.63	2.23	33.16

aDecomposed.

^{*}Present address: Chemistry Department, University of Zambia, Lusaka, Zambia.

\mathbf{R}	R'	Solvent	$R - C - O$	$C-H$	R' –C–O	
CH_3^a	CH_3^e		193.4	104.3	193.4	
$C_6H_5^b$	CHF_2 ^f	H ₂ O	192.8	$97.5(2.9)^k$	$182.8(22.9)^1$	
C_6H_5	CH_3^g	C_2H_5OH	195.7	101.2	186.4	
C_6H_5	C_6H_5	C_2H_5OH	188.0	98.0	188.0	
$CH3$ _b	CF_3^h	H ₂ O	205.4	101.0(2.0)	172.5(33.2)	
C_6H_5	CF ₃	C_2H_5OH	193.4	96.0(2.0)	174.0(33.2)	
$C_4H_3S^c$	CF ₃	C_2H_5OH	186.1	96.1(2.0)	173.1(34.2)	
$C_4H_3O^{\mathbf{b},\mathbf{d}}$	CF ₃	C ₂ H ₅ OH	182.3	96.6(2.0)	174.0(34.2)	
C_6H_5	$C_2F_5^1$	C_2H_5OH	193.2	97.9(2.9)	175.4(24.2)	
C_6H_5	$C_3F_7^1$	C_2H_5OH	192.9	97.7(2.0)	175.0(24.4)	
C_4H_3S	C_2F_5	C_2H_5OH	185.9	97.7(2.3)	174.2(25.2)	
C_4H_3S	C_3F_7	C_2H_5OH	185.8	97.9(2.9)	172.2(23.4)	
C ₄ H ₃ S	CHF ₂	C_2H_5OH	184.4	96.5(2.9)	178.3(24.4)	

TABLE II. ¹³C NMR Chemical Shift Data for some $UO_2(RCOCHCOR')_2$ [,] Solvent Chelates.

 $\frac{1}{2}$ NH₄ [UO₂(CH₂COCHCOCH₂)₂. bRun in CD₂CN solvent. ^C2'-thienyl. ^d2'-furyl. ^eCH₂, 27.9 ppm. fCHF₂, 113.5. ppm (244.6 Hz). 8 CH₃, 29.0 ppm. hC_{F3}, 117.8 ppm (284.2 Hz). 1 C₂Hs; -CF₃, 110.7 ppm; -CF₃, 118.7 ppm. ${}^1C_{3-}$ F_{7} ;-CF₂, 111.9 ppm;-CF₂, 108.8 ppm;-CF₃, 117.7 ppm. k $^{3}J_{C-F}$. ¹² J_{C-F}

TABLE III. ¹H and ¹⁹F NMR Chemical Shift Data for $UO_2(RCOCHCOR')_2$ • Solvent Chelates.

$\mathbf R$	R'	$C_{\frac{H}{2}}$	CHF ₂	CE ₂	CF ₂	CF ₃
CH_3^a	CH_3^a	7.2				
C_6H_5	CHF ₂	6.5	-126.8			
C_6H_5	CH ₃	6.6				
C_6H_5	C_6H_5	6.9	÷.			
CH ₃	CF ₃	6.4				-75.8
C_6H_5	CF ₃	6.8	-			-75.1
C_4H_3S	CF ₃	6.9				-75.2
C_4H_3O	CF ₃	6.9				-75.7
C_6H_5	C_2F_5	6.8			-122.0	-82.7
C_6H_5	C_3F_7	7.0		-126.8	$-119.8(7.6)^{b}$	$-80.9(7.4)^{\circ}$
C_4H_3S	C_2F_5	6.9			-121.9	-82.5
C_4H_3S	C_3F_7	6.9		-126.8	$-119.8(7.6)$	$-80.9(7.4)$
C_4H_3S	CHF ₂	6.6	-127.9			

 ${}^{a}NH_4[$ UO₂(CH₃COCHCOCH₃)₃]. ${}^{b}q, {}^{3}J_{F-F}$. ${}^{c}t, {}^{3}J_{F-F}$

the 13 C NMR chemical shift of the R-C-O carbon resonance when R is methyl or aryl gives a deshielding order of seven-coordinate $U >$ six-coordinate Sc, Al, Ga, In $>$ eight-coordinate $Z_r >$ four-coordinate Pd (square planar) chelates. For four-coordinate tetrahedral beryllium chelates, the chemical shift data suggest a placement between the six-coordinate and eight-coordinate chelates [6] .

 19 F and 1 H NMR spectral data are presented in Table III for the R'-group fluorines and the methine protons, respectively. The $CF₂$ fluorines adjacent to the carbonyl carbon do not show spin-spin cupling for the C_2F_7 and C_2F_7 substituents. For $\sum_{n=1}^{\infty}$ compounds having a R^{γ} substitutent containing fluorine, a more deshielded CH proton resonance is shown when R is phenyl or aryl as compared to a methyl substituent. These data are in agreement with that previously reported [6].

These $UO_2L_2 \cdot H_2O$ and $UO_2L_2 \cdot C_2H_5OH$ complexes most likely exist as seven-coordinate uranium. The two β -diketonate ligands and the solvent molecule are in a pentagonal plane with the uranyl oxygens forming a pentagonal-bipyramid uranium p_0 olyhedron. The CH₃ group of C₂H₂OH was $\frac{1}{2}$ deshielded by up to 5.5 ppm from its respective position in neat C_2H_2OH . This shift is indicative of strong complexing of the ethyl alcohol to the uranyl ion which results in a net transfer of electron density

Inorganica Chimica Acta Letters

towards uranium. X-ray studies on similar molecules have confirmed this geometry $[8-10]$. For any unsystematically substituted beta diketone ligand both *cis* and *trans* isomers of UO₂(RCOCHCOR')₂ solvent should exist. The *trans* isomer would have the solvent molecule near to both one R group of one ligand and one R' of the other ligand. Two *cis* isomers are possible with the solvent molecule being near and remote to both R (and also both R') groups. Thus a total of four resonances, two for the chemical nonequivalent groups of the *trans* isomer and one each for the two *cis* isomers, should be observed. The ambient temperature NMR spectral data presented herein show only one resonance; however, a previous NMR study has shown three resonances for the *cis* and *trans* isomers for the $UO₂(CF₃COCHCOCH₃)₂·DMSO$ complex. This complex is reported to be fluxional on the NMR time scale [11]. Conflicting reports now appear in the literature as to the nature of this exchange process $[10, 12-13]$. The investigation of this process via a high field NMR using variable temperature will be the subject of a future publication.

References

- M. Das, J. W. Beery and D. T. Haworth, Inorg. *Chim. Acta, 49, 17* (1980).
- D. T. Haworth, J. W. Beery and M. Das, *Polyhedron, I,* 9 (1982).
- M. Das, J. W. Beery and D. T. Haworth, *Synth. React. Znorg. Met.-Org. Chem., 12, 671 (1982).*
- D. T. Haworth, M. R. Pitluck, B. D. Pollard and M. Das, Synth. React. Inorg. Met.-Org. Chem., 13, 601 (1983).
- D. T. Haworth and M. Das, *Synth. React. Inorg. Met.- Or. Chem..* 14. 283 (1984).
- D.-T. Haworth and h. D&, .I. *Fluorine Chem.. 26, 331 (1984).*
- 7 M. Das, *Inorg. Chim. Acta*, 77, L65 (1983).
- E. Frasson, G. Bombieri and C. Panattoni, *Coord. Chem. Rev., I, 145 (1966).*
- *G.* M. Kramer, M. D. Dimes, R. B. Hall, A. Kaldor, A. J. Jacobson and J. C. Scanlon, *Inorg. Chem.*, 19, 1340 (1980).
- 0 B. Glavincevski and S. Brownstein, *Inorg. Chem.*, 22, 221 *(1983).*
- 11 *G.* M. Kramer and E. T. Maas, Inorg. Chem., 20, 3514 (1981).
- 12 G. M. Kramer, M. D. Dines, R. Kastrup, M. T. Melchior nd E. T. Maas, *Inorg. Chem., 20*, 1 (1981).
- 13 Y. Ikeda, H. Tomiyasu and H. Fukutomi, *Znorg.* Chem., 23, 1356 (1984).