Synthesis and Spectroscopic Properties of some New Seven-coordinate Thioacetamide Complexes of Molybdenum(II) and Tungsten(II)

PAUL K. BAKER* and STUART G. FRASER Department of Chemistry, University College of North Wales, Bangor LL57 2UW Gwynedd, U.K. (Received May 14, 1987)

Abstract

The compounds $[MI_2(CO)_3(NCMe)_2]$ (M = Mo or W) react with one equivalent of SC(NH₂)Me in CH₂Cl₂ at room temperature to initially give the acetonitrile substituted products [MI₂(CO)₃(NCMe)- ${SC(NH_2)Me}$ which was isolated for M = W. However, the molybdenum complex rapidly dimerizes with loss of acetonitrile to give the iodide-bridged compound $[Mo(\mu-I)I(CO)_3[SC(NH_2)Me]]_2$. The tungsten complex does not appear to dimerize, even after stirring at room temperature for 72 h in CH₂Cl₂. Two equivalents of thioacetamide react with [MI2-(CO)₃(NCMe)₂] in CH₂Cl₂ at room temperature to give the new bisthioacetamide compounds [MI2- $(CO)_3 \{SC(NH_2)Me\}_2\}$ via displacement of the labile acetonitrile ligands. The low temperature (-70 °C)¹³C NMR spectrum of $[WI_2(CO)_3{SC(NH_2)Me}_2]$ indicates that the geometry of the complex is capped octahedral with a carbonyl ligand in the unique capping position.

Introduction

Seven-coordinate complexes have become increasingly important in recent years; in particular the compounds $[MX_2(CO)_3L_2]$ (M = Mo or W; X = Cl or Br; L = PPh₃ or AsPh₃) which have recently been found to be catalysts for the ring-opening polymerization of norbornene and norbornadiene [1, 2]. Although a wide variety of complexes of the type $[M(CO)_n(S_2CNR_2)_2]$ (M = Mo or W; n = 2 or 3; R = Me, Et or ⁱPr) containing anionic sulphur donor ligands have been extensively investigated [3-8] very few seven-coordinate complexes containing neutral sulphur donor ligands have been reported.

In this paper we wish to describe the preparation and properties of some new thioacetamide sevencoordinate compounds of molybdenum(II) and tungsten(II).

Experimental

The complexes $[MI_2(CO)_3(NCMe)_2]$ (M = Mo or W) were prepared according to the literature method [9]. All chemicals used were purchased from commercial sources. Dichloromethane was distilled before use. ¹H NMR spectra were recorded on a Jeol FX60 NMR spectrometer. The low temperature (-70 °C) ¹³C NMR spectrum of $[WI_2(CO)_3{SC(NH_2)-Me}_2]$ was recorded on a Bruker WH-400 NMR spectrometer at the University of Warwick. All NMR spectra were calibrated against tetramethylsilane. Infrared spectra were recorded on a Perkin-Elmer 197 infrared spectrophotometer.

Elemental analyses for carbon, hydrogen and nitrogen were recorded on a Carlo Erba Elemental Analyser MOD 1106 (using helium carrier gas). The molecular weights were determined by Rast's method [10] using camphor as the solvent. Magnetic susceptibilities were measured using a Johnson-Matthey magnetic susceptibility balance.

$[Mo(\mu-I)I(CO)_{3} \{SC(NH_{2})Me\}]_{2} (1)$

To $[MoI_2(CO)_3(NCMe)_2]$ (0.206 g, 0.399 mmol) dissolved in CH₂Cl₂ (15 cm³) with continuous stirring under a stream of dry nitrogen was added SC(NH₂)-Me (0.03 g, 0.399 mmol). After stirring the solution for 1 min, filtration, removal of solvent *in vacuo* gave brown crystals of $[Mo(\mu-I)I(CO)_3 \{SC(NH_2)Me\}]_2$ (yield = 0.12 g, 59%), which were recrystallized from CH₂Cl₂. Anal. Calc. for C₁₀H₁₀N₂O₆I₄Mo₂S₂: C, 11.8; H, 1.0; N, 2.8. Found: C, 12.3; H, 1.4; N, 2.8%. Magnetic susceptibility of 1 is -0.217×10^{-6} c.g.s. Molecular weight for 1, C₁₀H₁₀N₂O₆I₄Mo₂S₂: calc. 1018; found, 862.

$[WI_2(CO)_3(NCMe){SC(NH_2)Me}] (2)$

To $[WI_2(CO)_3(NCMe)_2]$ (0.233 g, 0.386 mmol) dissolved in CH₂Cl₂ (15 cm³) with continuous stirring under a stream of dry nitrogen was added SC(NH₂)Me (0.029 g, 0.386 mmol). After stirring the solution for 30 s, filtration, removal of solvent *in vacuo* gave yellow crystals of $[WI_2(CO)_3(NCMe)-$ {SC(NH₂)Me}] (yield = 0.20 g, 81%), which were

^{*}Author to whom correspondence should be addressed.

recrystallized from CH₂Cl₂. Anal. Calc. for C₇H₈N₂-O₃I₂WS: C, 13.2; H, 1.3; N, 4.4. Found: C, 13.6; H, 1.4; N, 4.1%. Magnetic susceptibility of **2** is -0.432×10^{-6} c.g.s. Molecular weight for **2**, C₇H₈N₂O₃I₂WS: calc. 638; found, 571.

$[MoI_2(CO)_3 \{SC(NH_2)Me\}_2] (3)$

To $[MoI_2(CO)_3(NCMe)_2]$ (0.206 g, 0.399 mmol) dissolved in CH_2Cl_2 (15 cm³) with continuous stirring under a stream of dry nitrogen was added $SC(NH_2)Me$ (0.06 g, 0.799 mmol). After stirring the solution for 6 min, filtration, removal of solvent *in vacuo* gave orange crystals of $[MoI_2(CO)_3{SC(NH_2)-Me}_2]$ (yield = 0.14g, 60%), which were recrystallized from CH_2Cl_2 . *Anal.* Calc. for $C_7H_{10}N_2O_3I_2MoS_2$: C, 14.4; H, 1.7; N, 4.8. Found: C, 14.2; H, 1.7; N, 4.4%.

$[WI_2(CO)_3 \{SC(NH_2)Me\}_2] (4)$

To $[WI_2(CO)_3(NCMe)_2]$ (0.233 g, 0.386 mmol) dissolved in CH_2Cl_2 (15 cm³) with continuous stirring under a stream of dry nitrogen was added SC(NH₂)-Me (0.058 g, 0.772 mmol). After stirring the solution for 8 min, filtration, removal of solvent *in vacuo* gave orange crystals of $[WI_2(CO)_3{SC(NH_2)Me}_2]$ (yield = 0.16 g, 62%), which were recrystallized from CH_2Cl_2 . *Anal.* Calc. for $C_7H_{10}N_2O_3I_2S_2W$: C, 12.5; H, 1.5; N, 4.2. Found: C, 12.5; H, 1.5; N, 3.8%.

Results and Discussion

Equimolar quantities of $[MI_2(CO)_3(NCMe)_2]$ (M = Mo or W) and SC(NH₂)Me react in CH₂Cl₂ at room temperature to afford the new dinuclear molybdenum complex $[Mo(\mu-I)I(CO)_3{SC(NH_2)Me}]_2$ or the mononuclear tungsten compound $[WI_2(CO)_3-(NCMe){SC(NH_2)Me}]$. $[MI_2(CO)_3(NCMe)_2]$ reacts with two equivalents of SC(NH₂)Me in CH₂Cl₂ at room temperature to give the new seven-coordinate compounds $[MI_2(CO)_3{SC(NH_2)Me}_2]$. All the complexes have been fully characterized by elemental analysis (C, H and N) (see 'Experimental'), IR and ¹H NMR spectroscopy (Table I). The complexes are moderately stable in the solid state when stored under nitrogen at 0 °C, but decompose rapidly in solution when exposed to air. They are moderately soluble in CHCl₃ and CH₂Cl₂ and very much more soluble in MeOH.

Reaction of one equivalent of SC(NH₂)Me with $[MoI_2(CO)_3(NCMe)_2]$ at room temperature in CH₂Cl₂ must initially afford the monoacetonitrile compound $[MoI_2(CO)_3(NCMe){SC(NH_2)Me}]$. This rapidly dimerizes with loss of the weakly bound acetonitrile ligand to give the iodide-bridged product $[Mo(\mu-I)I(CO)_3 \{SC(NH_2)Me\}]_2$ which was isolated. Whereas reaction of one equivalent of SC(NH₂)Me with $[WI_2(CO)_3(NCMe)_2]$ gives the monoacetonitrile product $[WI_2(CO)_3(NCMe){SC(NH_2)Me}],$ surprisingly, stirring $[WI_2(CO)_3(NCMe){SC(NH_2)}-$ Me}] in CH_2Cl_2 at room temperature for 72 h did not afford the dimeric complex $[W(\mu-I)I(CO)_3 \{SC(NH_2)\}$ Me]₂. The monoacetonitrile monomer (2) and some decomposition products were isolated. A possible explanation for this behaviour is due to the slightly smaller size of the Mo(II) ion compared to the W(II) ion. Hence $[MoI_2(CO)_3(NCMe){SC(NH_2)Me}]$ loses NCMe to release steric strain around the molybdenum centre to give the six-coordinate intermediate $[MoI_2(CO)_3{SC(NH_2)Me}]$ which then rapidly dimerizes via attack of the iodide lone pairs. Evidence to support this dissociative mechanism comes from some work reported by Tripathi and co-workers [11]. They reacted $[Mo(CO)_5 L]$ (L = PPh₃, AsPh₃ or SbPh₃) with X_2 (X = Cl, Br or I) in hexane which resulted in the immediate precipitation of the coordinatively unsaturated '16-electron' compounds [MoX₂- $(CO)_{3}L$]. The dimeric nature of the seven-coordinate

TABLE I. Infrared^a and ¹H NMR^b Data for the Complexes $[Mo(\mu-I)I(CO)_3{SC(NH_2)Me}]_2$, $[WI_2(CO)_3(NCMe){SC(NH_2)Me}]$ and $[MI_2(CO)_3{SC(NH_2)Me}_2]$

Complex		ν(CO) (cm ⁻¹)	ν (CN) (cm ⁻¹)	ν(CS) (cm ⁻¹)	¹ H NMR (δ) (ppm) ^b		
					NCMe	Ме	NH ₂
1	[Mo(µ-I)I(CO) ₃ {SC(NH ₂)Me}] ₂	2075(m), 2035(s), 1960(m)		1619(s)			с
2	$[WI_2(CO)_3(NCMe){SC(NH_2)Me}]$	2080(s), 2035(s), 1942(brs)	2320(w), 2298(w)	1617(s)	1.99(s, 3H)	2.77(s, 3H)	c
3	$[MoI_2(CO)_3 \{SC(NH_2)Me\}_2]$	2020(s), 1958(s), 1930(s)		1613(s)		2.65(s, 3H)	3.60(s, 2H)
4	$[WI_2(CO)_3 \{SC(NH_2)Me\}_2]$	2020(s), 1943(s), 1920(s)		1613(s)		2.70(s, 3H)	3.34(s, 2H)

^aSpectra recorded in CHCl₃ or MeOH; s, strong; m, medium; w, weak. Me₄Si. ^cNo NH₂ resonance was observed for these complexes. ^bSpectra recorded in CDCl₃ (+25 °C) referenced to

complex $[Mo(\mu-I)I(CO)_3{SC(NH_2)Me}]_2$ is confirmed by magnetic susceptibility and molecular weight measurements (see 'Experimental').

Reaction of $[MI_2(CO)_3(NCMe)_2]$ with two equivalents of SC(NH₂)Me at room temperature in CH₂Cl₂ rapidly gave the expected $[MI_2(CO)_3 {SC(NH_2)Me}_2]$ compounds. In view of the similarity of the carbonyl IR pattern to other analogous seven-coordinate compounds which have been shown to have capped octahedral geometry from X-ray crystallography [12-20], it is highly likely that 3 and 4 have capped octahedral geometry. This is further supported by the low temperature (-70 °C) ¹³C NMR spectrum (CD_3OD) of $[WI_2(CO)_3[SC(NH_2)Me]_2]$ which shows two carbonyl resonances at $\delta = 206.40$ and 231.96 ppm. Colton and Kevecordes [21] have shown how low temperature ¹³C NMR spectroscopy can be used to see if there is a carbonyl ligand in the unique capping position by the presence of a low field carbonyl resonance. Hence the low field resonance at $\delta = 231.96$ ppm for 4 is probably due to a carbonyl ligand in the unique capping position, and the resonance at $\delta = 206.40$ is due to two equivalent carbonyls in normal octahedral environments. Many attempts were made to grow crystals of $[MI_2(CO)_3-$ {SC(NH₂)Me}₂] suitable for X-ray crystallography without success.

Acknowledgements

We wish to thank Dr O. W. Howarth for measuring the low temperature $(-70^{\circ}C)^{13}C$ NMR spectrum of the complex $[WI_2(CO)_3{SC(NH_2)Me}_2]$ at the University of Warwick, and we thank the S.E.R.C. for support.

References

- 1 L. Bencze and A. Kraut-Vass, J. Mol. Catal., 28, 369 (1985).
- 2 L. Bencze, A. Kraut-Vass and L. Prókai, J. Chem. Soc., Chem. Commun., 911 (1985).
- 3 R. Colton, G. R. Scollary and I. B. Tomkins, Aust. J. Chem., 21, 15 (1968).
- 4 G. J.-J. Chen, R. O. Yelton and J. W. McDonald, Inorg. Chim. Acta, 22, 249 (1977).
- 5 J. L. Templeton and B. C. Ward, J. Am. Chem. Soc., 102, 6568 (1980).
- 6 J. A. Broomhead and C. G. Young, Aust. J. Chem., 35, 277 (1982).
- 7 J. L. Templeton, R. S. Herrick, C. A. Rusik, C. E. McKenna, J. W. McDonald and W. E. Newton, *Inorg. Chem.*, 24, 1383 (1985).
- 8 J. R. Morrow, J. L. Templeton, J. A. Bandy, C. Bannister and C. J. Prout, *Inorg. Chem.*, 25, 1923 (1986).
- 9 P. K. Baker, S. G. Fraser and E. M. Keys, J. Organomet. Chem., 309, 319 (1986).
- 10 F. G. Mann and B. C. Saunders, 'Practical Organic Chemistry', Longman's Green, London/New York/ Toronto, 1954, p. 342-344.
- 11 S. C. Tripathi, S. C. Srivastava and D. P. Pandey, Transition Met. Chem., 2, 52 (1977).
- 12 A. Mawby and G. E. Pringle, J. Inorg. Nucl. Chem., 34, 517 (1972).
- 13 M. G. B. Drew, J. Chem. Soc., Dalton Trans., 1329 (1972).
- 14 M. G. B. Drew, A. W. Johans and A. P. Wolters, J. Chem. Soc., Chem. Commun., 819 (1971).
- 15 M. G. B. Drew, J. Chem. Soc., Dalton Trans., 626 (1972).
- 16 M. G. B. Drew, J. Chem. Soc., Dalton Trans., 1984 (1975).
- 17 M. G. B. Drew and A. P. Wolters, Acta Crystallogr., Sect. B, 33, 205 (1977).
- 18 G. Schmid, R. Boese and E. Welz, Chem. Ber., 108, 260 (1975).
- 19 R. Boese and U. Müller, Acta Crystallogr., Sect. B, 32, 582 (1976).
- 20 M. G. B. Drew and J. D. Wilkins, J. Chem. Soc., Dalton Trans., 557 (1977).
- 21 R. Colton and J. Kevecordes, Aust. J. Chem., 35, 895 (1982).