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Abstract Introduction 

An evaluation of the cooperativity effect in 
metal-ligand and protein-ligand complexes can be 
made by means of dimensionless parameters K, 
(homotropic), and K,: (heterotropic). Starting from 
the relation fi = a In &/a ln[A] between formation 
function fi and p+tion function ZM = 1 + fll[A] + 
/&[A]* t . ..&[A]‘... t &[Alf it is shown that on the 
Bjerrum plane A = f(ln [A]), the standard free-energy 
AC” and therefore the standard chemical potentials 
A$= -RTln K, and A,;1 = -RTln K,, can be ob- 
tained exactly from a convoluted or saturation 
function FL, which has the property of being 1 when 
Ap” = 0, as do the equilibrium constants. 

It has been shown in a preceding paper [I] that 
the free-energy changes AC; at pH = 7 of divalent 
metal-ligand complexes coupled with the deprotona- 
tion processes of the ligand fall in the same range of 
values as the free-energy changes AG”’ of biologically 
important reactions such as ATP hydrolysis, PGP 
hydrolysis, etc. Comparable free-energy changes are 
the necessary pre-requisite for coupling in metabolic 
reactions. 

The standard convoluted function FL0 for multi- 
step equilibria coincides with the maximum term, 
&, of & and can be calculated on the Bjerrum plane 
as balance between two integrals, one integral giving 
the contribution to free-energy of the ‘association’ 
partition function, &, the other giving the contribu- 
tion to free-energy of the ‘dissociation’ partition 
function, 2:. 

It is the purpose of the present research to see if 
by application of the partition function method 
[2-5] appropriate chemical potential changes can be 
obtained suited to measure ligand-ligand cooperative 
effects both in metal-ligand and macromolecule- 
ligand reactions. 

F& can be calculated as the product of stepwise 
equilibrium constants K1, K2, . . ., Kt. Differences 
between areas on the Bjerrum plane measure Ap;/RT 
and AgcJRT. The statistical factors for homotropic 
and heterotropic complexes are equal. 

The homotropic or heterotropic cooperativity 
effects obtained in both metal-ligand and protein- 
ligand equilibria come out to be of the same order of 
magnitude. All of these analogies suggest that com- 
parative thermodynamic studies of metal-ligand and 
protein-ligand equilibria can be of some help to 
elucidate problems in receptor-ligand thermodynam- 
ics and in bioenergetics both from formal and experi- 
mental points of view. 

The chemical potential changes due to the co- 
operativity effect can be better evaluated from K, = 
Pil’i/(K~k,(& ( average cooperativity effect) rather 

than by K, = (Pi/Si-2)“*/(k,tcy,Si -1/Pi-2) (stepwise 
cooperativity effect). The former is well correlated 
with the successive additions of ligands. The co- 
operativity effect is strongly influenced by changes 
in ionic strength, thus confirming the interpretation 
of the phenomenon as due to ligand-ligand external 
interactions. The cooperativity effect, although small 
(0 < 1 Apti < 6 kJ/mol), is significantly greater than 
the experimental error. The cooperativity effect in 
homotropic and heterotropic metal complexes is of 
the same order of magnitude as the cooperativity 
effect in macromolecule-ligand equilibria. 

The cooperativity effects can be measured on the 
same scale as the chelate effect [6] by means of 
parameters which correspond to changes in chemical 
potentials. The parameter K, indicates the extent of 
homotropic cooperativity, K, and K, the extent of 
homotropic chelation, with and without interdonor 
cooperativity, respectively. The parameters are 
related by K, = K,K,. 

Corresponding parameters K,,, K,,, KY, are used 
for heterotropic cooperativity and chelation. The 
evaluation of these parameters can be made by a 
general expression 

K, = Robs&l /k,,(,,) 

0020-l 693/86/$3 SO 

where effect e = 7), E, y, and other indexes. Robste) is 
a ratio, variable with e of experimental equilibrium 
constants, for instance &bs(y) = Pz”*IKI, and ksqr) 
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is an appropriate statistical factor. When used as such 
R obstej indicates a chemical reaction, for instance a 
disproportionation reaction [7] 

2MA=MA,+M 

or 

MA+MB=MAB+M 

but if corrected for statistical factor kstCe,, it be- 
comes a thermodynamic parameter K, related to the 
intrinsic affinity of binding. At the same time the 
product of the experimental constant of the denomi- 
nator of R,,bs(e) multiplied by kstte) represents the 
reference (REF) state of the parameter K, e.g. 

K, = Pz”2/(Klk,tc,,) = ~zl’*lK~mtr~ 

We wish to show how these constants are related 
to the partition function EM, how they can be cor- 
rectly interpreted, and what kinds of information 
they offer. 

Standard State and Convoluted Function 

The formation function of Bjerrum 

ii= [MA] + 2 [MA21 + . . i[MAJ . + t[MAt] 

[M] + [MA] + [MA21 + . . . [M&I... + [MAtI (‘) 

is a stoichiometric ratio between moles of ligand A 
bound and total moles of receptor M (macromolecule 
or metal) present. For mononuclear complexes, it is 
related to the thermodynamic function ‘free-energy’ 
by means of the partition function of statistical 
thermodynamics [2-S]. In fact, under the condition 
of mononuclear complexes, 

aln& 
fi= ___ 

a In [A] 

where 

IEM= 1 +fll[A] +fiz[A]‘+ . ..pi[A]‘+ ... +flt[A]’ 

(3) 

is a partition function. The fli parameters are cumula- 
tive formation constants. The statistical thermo- 
dynamic statement 

-AG 
In&= __ 

RT 
(4) 

attributes to eqn. (2) the meaning of a partial deriva- 
tive of a thermodynamic function and transforms it 
from an analytical to a thermodynamic relation. 

By integration of eqn. (2) with respect to In[A] 

[Al = 1 

s AG; 
iidln[A] =- __ 

RT 
= In Cb (5) 

[A] =0 

we obtain the statistical thermodynamic free-energy 
change, AG”,/RT for all the chemical associations 
taking place between M and A, for concentrations 
0 < [A] < 1. 

In classical chemical thermodynamics, the stan- 
dard free-energy change for the whole process, AGo/ 
RT can be subdivided into partial chemical potential 
changes, each corresponding to the addition of one 
ligand A to the metal or macromolecule M: 

AG” Ac(; APi APP 
----=-+_.__+ . ..+ ~ +...+ - 
RT RT RT RT 

T, (6) 

By assuming that A$ corresponds to the addition to 
M of the i-th ligand, we state implicitly that the parti- 
tion function is factorable as a product of stepwise 
partition functions. EM, however, for example for the 
three-site receptor, can be factored in terms of site 
microconstants kl, k2, k3 as a product of site parti- 
tion functions 

EM = @,[A1 + 1 Hz [Al + l)(ks [Al + 1) (7) 

but we do not know if factoring of &,, according to 
eqn. (7) is satisfying the requirements of eqn. (6), of 
being AG’/RT sum of stepwise chemical potentials. 
We can note that the explicit form of eqn. (7) is equal 
to eqn. (2) if p1 = kl t k2 t k3, /I2 = klkz t klk3 t 
kzks, f13 =klk2k3. On the other hand if we define 
the constants K,, K2, K3 as apparent stoichiometric 
macroconstants interrelated by (3, = K,, f12 = K1K2, 

Ij3=K,KzK3, we apparently assume a factoring of 
partition function different from eqn. (7) and subse- 
quently a particular subdivision, possibly satisfying 
eqn. (6) of AG”/RT. 

For simplicity, but without loss of generality, we 
start with the case of a one-site complex, i.e. with 
/3, = kl = K,. The formation function of this simple 
complex is 

fi= K,[Al 
1 +K,[Al 

(8) 

and it is equal to the mole fraction of MA, (Ye. 
The value of I& is related to the mole fraction 

of MA by 

[Al = 1 

In ZZM = 
s 

@I d In [A] (9) 
[Al =0 
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In K, 0 -In[A] 

Fig. 1. Diagram of LYI =KI[A]/(~ + KIIA]) as a function of 

ln[A] (logistic curve). The areas between the curve and the 

axis at ln[A] = 0 are proportional to standard freeenergies. 

1.0 
Ic d 

a, 
0.5 

0 D II 
b; [A]>1 

InK, o -In[A] 

Fig. 2. Mole fraction or, as function of ln[A] for cases when 
the approximation K,+ 1 CJ K1 is no longer valid. a, b, c are 

areas corresponding to free-energy changes. a + b is less than 

the standard chemical potential (a + b < A@‘,/RT = a + c). 

For symmetry conditions b = c + d. 

with 

In ZG = ln( 1 + K,) (10) 

However, only if KS 1 is the result of eqn. (10) 
completely in accord with the classic thermodynamic 
equality 

-A/G 
__ =lnK, 

RT 
(11) 

which could satisfy eqn. (6). 
The curve (Fig. 1) representing cxl = K,[A]/(l t 

K,[A]) as a function of ln[A] is perfectly sym- 
metrical with respect to (Y~ = 0.5. In fact 

aff, 
____ = [A] 

a{K,[AlIU +KdAI)) 
a ln[A] aLA1 

= cr*(l -(YJ (12) 

and the standard chemical potential is represented by 
the area between the curve and the vertical axis at 
[A] = 1. This area is equal to the area of the rectangle 
having (Ye = 1 as base and In K1 as height. When K1 is 
small (Fig. 2), the value of the integral and the value 
of the area of the rectangle of height In K, do not 
coincide any more: the value of the integral is 

I I 

[Al = 1 

In C, =atb 
CA1 = 0 

and the area of the rectangle amounts to 

(13) 

lnK,=a+c (14) 

with difference, for the symmetry condition, eqn. 

(12), 

(a + b) - (a + c) = d (15) 

between the two areas. 
The areas a and b can be calculated from the 

definite integrals 

b= 

and 

a= 

I.41 = UK, 

In CM = In 2 (16) 
[A] = 0 

[A] = 1 

In EM = ln(1 t K,) - In 2 (17) 
[4=1/K, 

In order to evaluate area c we introduce a reciprocal 
partition function 

%I = l/(1 +U/K,[AI)) (18) 
which is 0 < Zh < 1, instead of 1 < &, < 00. Ob- 
serve that EL = CX,, the fraction of M present as 
species MA. Then the area c is 

CA] = I 

c= 1nZb 
I I 

Kl 
= In - t In 2 (19) 

[Al = l/K, 1 tK, 

Therefore 

(a t c) = ln(1 t K,) - In 2 t In K1 - ln(1 t K,) t In 2 

=lnK, (20) 

in perfect agreement with eqn. (11). This means that 
the general relationship stated by statistical thermo- 
dynamics between partition function and equilibrium 
constant is more correctly expressed by 

-Ap”lRT= In Z’k t In ZE”= In FL0 (21) 

Fb is a convoluted function which represents the 
joint probability of existence of complexes with 
K > 1 (associating with respect to the standard state) 
and those with K < 1 (dissociating with respect to the 
standard state). In other words it covers both fields of 
concentrations above and below unitary concentra- 
tions. It has the property that its value is unity when 
-Ap”/RT = 0. 

Factoring of the Convoluted Function 

The convoluted function is also suited to be 
factored 

Fit =Fh,,,,F&,,,, . ..= nf=,~&, (22) 

so to make the capacitative properties of -AG”/RT 
correspond to a sum of stepwise chemical potentials 
-App/RT, as required by eqn. (6). 

Consider the formation function ii for complexes 
MA and MA*. The curve A = f(ln[A]) is represented 
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-In Kz c;EE"=F&" 

Because of eqn. (24) we can also write 

(25) 

” 

0 -In [A] 

Fig. 3. Formation function and standard free-energy 

(-AG"/RT = In FO~) of a complex MA2, with step MA + A = 

MA2 displaced to the left (K < 1). Hatched areas correspond 
to the two integrals of eqn. (28). In Fog can be obtained as 

difference between hatched areas or between rectangular 

areas as well. 

in Fig. 3 and it has been sketched in such a way as to 
show the case where the equilibrium MA + A * MA2 
is displaced to the left. For this case also, we need a 
convoluted function to represent the behaviour of 
the system with respect to the reference state. 

In order to find the convoluted function for a 
general case of multistep equilibria, we introduce a 
dissociation partition function, X2. 

This function can be derived from LY~ the molar 
fraction of the maximum term MAt contained in 

zM. 

For example with t = 2 we have 

1 _ = 1+Pl[Al+82[A12 =1+ 1 1 
- t 

a2 P2[A12 Kz [Al KzK,[Al’ 

(23) 

that has clearly the structure of a dissociation parti- 
tion function in which the ground state is MA2 and 
the single species are obtained from it as stepwise 
dissociation reactions. 

Therefore in general 

1 8$1=1+-t 1 

at Kt [Al KtKt -,[A]’ 

1 
+ . ..+ 

KJ_,... KJA]’ 
(24) 

Note that the stepwise equilibrium constants Ki 
are necessary to represent the dissociation process 
and they must be equal in both association and dis- 
sociation reactions. 

The standard convoluted function is obtained 
from eqn. (21) as 

(26) 

In analogy with eqns. (2), (4) and (5) we can write 

aln4Eg a In (Y 

a In [A] 
d ln[A] = ~ d ln[A] 

a In [A] 

= a(-AG,lRT) 

a In [A] 
d ln[A] (27) 

Recalling eqn. (5) and remembering that eqn. (21) is 
sum of two integrals, we can also write 

AC” AG; AG; [Al = 1 

-- =_-_--.-t-.--.--z 

RT RT RT J- 
W d ln(A] 

[A]= 0 

[*I= l a In ot 
t 

J 
----d In[A] 

[Al=- 
a ln[A] 

The two component integrals have been obtained 
by rearranging the integrals of eqn. (21) by means 
of eqns. (13), (14) and (15). They correspond to the 
hatched areas in Fig. 3. 

Eqn. (28) is an important correction to the 
conclusion of Schellman [4] concerning the rela- 
tionship between binding free-energy and partition 
function. Because 

lirn MAIf = 
[Al +- CM 

lim ot = 1 
CA1 -+- 

we have 

AG” 
- ~ = In & 

RT 

(29) 

(30) 

where /3, is the ‘saturation’ function of Gill [S]. It is 
evident that eqn. (30) corresponds to a new statistical 
thermodynamic statement (standard state) 

AG” 
-- 
RT 

=lnFC,O (31) 

different from eqn. (5). The convoluted function 
FL = & [A] t is a pure number giving the product of 
activities. Its value in the standard state ([A] = 1) 
coincides with the maximum term & of XM [5]. 

The convoluted function can be factored to satisfy 
eqn. (22). In Fig. 3, the area under the curve mea- 
sures the free-energy change for the formation of the 
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complex MA*. The area corresponding to In Fb” can 
be subdivided into two contributions 
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AC” A$ A/-C 
- - =- - - __ =lnK,+lnKs 

RT RT RT 
(32) 

where for this example -ApG/RT < 0. 
Each contributing area can be thought as delimited 

by a symmetrical sigmoidal curve. In fact the partial 
formation functions corresponding to each step have 
mid-point symmetry as shown by Nagypal er al. [8]. 
These authors, while discussing the possible asym- 
metry of the Bjerrum formation function, treated the 
problem of successive steps in metal-ligand com- 
plexes in terms of reduced formation functions and 
the Fronaeus [9] equation. They conclude that the 
formation function as a whole can be asymmetric but 
can be represented as a combination of symmetrical 
reduced steps. Each symmetrical portion delimits an 
area which is equivalent to a rectangular area as 
already shown in Fig. 2. 

The introduction of the dissociation partition 
function CE, and of the convoluted or saturation 
function FL presents important advantages. First of 
all the statistical thermodynamic function FL results 
as a balance at the standard state between dissocia- 
tion free-energy and association free-energy. It 
behaves as the equilibrium constants in classical 
thermodynamics. The contradiction between the 
statistical thermodynamic statement (eqn. (IO)) and 
the classical thermodynamic equality (eqn. (11)) is 
removed. The second advantage of the convoluted 
function is that it can be factored in terms of step- 
wise partition functions (K,[A] , K2 [A], etc.), each of 
which is an activity and gives the probability of 
finding that species in the solution at concentration 
[A]. These probabilities are experimentally determin- 
able as equilibrium constants. 

One characteristic of the dissociation partition 
function and of the convoluted function is that for 
eqn. (29) to be valid one has to prove experimentally 
by increasing [A] that the saturation of sites has been 
achieved. This is perfectly equivalent to determining 
t in the Scatchard plot by extrapolating to ii/[A] -+ 0. 

Statistical Factors 

The stepwise equilibrium constants K,, Kz, . . ., Kt 
and the cumulative formation constants fit are related 
to the site microconstants (kt). Each Ki is associated 
with multiplicity coefficients miK and each pi with 
multiplicity coefficients mi. 

In general for t possible binding sites the i-th 
partial constant is related to the site affinity k (equal 
for every site) by [IO] 

Ki=(t-it l)k/i (33) 

The term (t - i + 1)/i = miK represents the statistical 
factor for the i-th constant. In order to calculate 
ratios or geometrical averages of equilibrium con- 
stants, ratios and geometrical averages of the multi- 
plicity coefficients will be used. 

In case the intrinsic affinities are different, as a 
first approximation the same mi holds. For hetero- 
tropic complexes we choose as a comparison term the 
affinity of an average ligand r, 

KMML = WMAKMB) 
112 

(34) 

and the algebra of the hypothetical microconstants is 
the same as that for homotropic complexes of the 
ligand L. 

Different stoichiometries can engender uncer- 
tainties in the choice oft, the maximum coordination 
number. 

Stepwise and Average Cooperativity 

The factoring of the convoluted function into 
stepwise partial functions K,[A], K2[A], etc. cor- 
responds, in accordance with Nagypal et al. [8], to 
represent the stepwise additions of ligand to metal 
or macromolecule by means of a family of curves 
(Fig. 4) as in an ordinary distribution diagram. Each 
curve delimits an area of height In Ki proportional to 
-A$/RT, i.e. the chemical potential change for 
addition of the i-th ligand. 

1.0 

Ea, 
0.5 

InK, lnKr InK3 

’ I m 1 I 

[Al>1 

0 -In[A] 

Fig. 4. Chemical potential changes for successive additions of 

ligand. 

The cooperativity effects are measured in Fig. 4 by 
areas which are differences between the areas of 
rectangles of height In Ki. We can distinguish two 
types of differences. The difference between In Ki 
and In Ki-1 divided by two, measures the stepwise 
cooperativity effect, whereas In K7 = (l/i)E In Ki - 
In K1, gives the average cooperativity. In the calcula- 
tion of these averages and differences, values of kst 
must be taken into account. The product of the 
appropriate statistical factor by the constant at the 
denominator (Kt _ 1 or K,) defines the reference 
(REF) compound. For example, for a 4-site complex, 
we have the following stepwise cooperativity param- 
eters 
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K, = B?21K&st~r~ with KREF = Klksttr) 

K = WPJ 1’2/Kzk,,~y~ with KREF = K2 k,tty) 

K = U3.4 432 1 1’21K&(rj with KREF =K3kst(y) 

and the average cooperativity parameters 

K7 = Bz1’21K,k,t19j with KREF = Klkstcll 

Kq = P31’3/K,kst(T.) with K,,, = Klksttlj 

K4 = P?41K,kstcvj with KREF = KlkstcqJ 

The values of k,, are obtained as averages and 
ratios of the coefficient mi of single constants. 

The different molecular interpretations of step- 
wise and average cooperativity parameters can be 
better explained with reference to diagrams. 

The diagram in Fig. 5 represents the addition of 
ligand without rearrangement of bonds. Here the 
affinity is symbolically represented by the length of 
the M-A bond, the dotted line representing the 
ligand-ligand interactions and the full arrows the 
complex-solvent interactions. Were this the actual 
situation, then the appropriate evaluation of cooper- 
ativity would have been the stepwise cooperativity 
parameter 

MA2+ A ~5 MA3 

(35) 

MA3+ A S MA4 

Fig. 5. Stepwise addition of ligand without rearrangement of 

bonds. The dotted arrows represent ligand-ligand inter- 
actions and the full arrows the interactions with the solvent. 

A. Braibanti et al. 

MA3+A *MA., 

Fig. 6. Stepwise addition of ligand with rearrangement of 

bonds. The dotted arrows represent ligand-ligand inter- 

actions and the full arrows the interactions with the solvent. 

This, however, is not the general case because the 
crystal structure determinations have shown how the 
general trend is towards equal average bond distances 
M-A. 

The situation with averaging of the bonds is 
depicted in Fig. 6, where the extreme case with 
perfectly equal bonds has been drawn. Reality in 
both metal-Iigand and macromolecule-ligand com- 
plexes is nearer to these schemes rather than to that 
of the preceding diagram. 

The average cooperativity constant 

K, _ Pilli _ Oili 

K&t(~) KREF 
(36) 

measures the difference between the average free- 
energy change on formation, e.g. of MA and MA2, 
and the affinity of A for M on formation of one 
single bond M-A. The average cooperativity param- 
eter KT is the most appropriate indicator of the real 
molecular process. This parameter measures the 
external ligand-ligand interactions, those which are 
highly exposed to the action of the solvent and 
therefore to the changes in ionic strength. 

Cooperativity Effect and Experimental Error 

The calculation of the cooperativity free-energy 
implies the calculation of differences between stan- 
dard chemical potentials and hence between loga- 
rithms of equilibrium constants. It is therefore very 
important to assess the significance of the differences 
calculated with respect to the experimental error in 
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TABLE I. Average and Stepwise Cooperativity Effects in 

Nickel(H)-Ammonia System in Aqueoys Solution at 30 “Ca 

i log pi A/J.;= -RT ln Ky (kl/mol) 

Average Stepwise 

Uncorrected Corrected Uncorrected Corrected 

1 2.78 0 0 0 0 

2 5.05 1.46 0.36 1.46 0.36 

3 6.70 3.12 1.13 1.77 0.98 

4 8.01 4.43 1.62 0.86 0.13 

5 8.66 5.98 2.37 0.33 -0.46 

6 8.74 7.55 3.04 1.63 0.53 

y=ai+b 

a 1.50 0.62 0.11 -0.02 

b -1.51 -0.75 0.62 0.32 

r 1.00 0.99 0.28 0.07 

“Y 0.1 0.2 0.7 0.5 

aData from ref. 8. 

-RTlnKr j t/ 

(kJ/mol) 6 

P 

-2 L I 

Fig. 7. Stepwise and average cooperativity effects for 

nickel(H)-ammonia system. o, Ar”? - Ap”gstc_) (average, 

uncorrected); 6, Aro7 (average); 0, Apoy (stepwise . 3 

the determination of the equilibrium constants. The 
analysis of precision and accuracy [ 11, 121 has 
shown: 

(i) that the main source of error in log Ki stems 
from differences between titrations and ranges from 
0.005 to 0.5 logarithmic units, which corresponds to 
0.02-0.20 kJ/mol. 

(ii) that the error in log Ki is the same as that in 
the corresponding log /Ii. 

The significance of the assessment can be better 
explained with reference to real cases. The data of 
stepwise and average cooperativity for the nickel- 
ammonia system in aqueous solutions at 30 “C are 
reported in Table I and represented in Fig. 7. The 
stepwise cooperativity shows a jumping behaviour. 
The stepwise uncorrected data interpolated by the 
line y = 0.62 +O.ll i with uy = 0.7 kJ/mol come 
out to be significantly spread, much more than the 

estimated experimental error which is cry = 0.09 kJ/ 
mol. The interpolation line does not represent the 
actual behaviour and the data must be joined by a 
discontinuous line (Fig. 7) similar to that drawn by 
Klotz and Hunston [lo]. The interpretation of this 
trend in terms of molecular processes is rather dif- 
ficult . 

The average cooperativity, on the other hand, 
shows strikingly regular behaviour. The data of the 
uncorrected average cooperativity are interpolated 
by the liney=-1.51 t 1SOi with o,=O.l kJ/mol, 
practically coincident with the experimental error. 
The correlation is highly significant and indicates that 
the rearrangement of the bonds takes place and that 
the ligand-ligand interaction is 1.5 kJ/mol per ligand 
added. The corrected stepwise values are again un- 
correlated whereas the corrected average values are 
interpolated by the line y = -0.75 t 0.62 i with error 
uY = 0.2 kJ/mol. The statistical correction increases 
the error slightly, remaining however close to the 
experimental error. The corrected cooperativity 
effect is 0.62 kJ/mol per ligand added and this is the 
actual difference in intrinsic affinity due to cooper- 
ativity effects in this system. They are not very high 
but distinctly different from the experimental error. 

Another example (Table II) shows the incidence 
of the ionic strength on the cooperativity effect. The 
data refer to bismuth-thiocyanato system and are 
represented in Fig. 8, where the stepwise coopera- 
tivity data are not drawn because they show the same 
unpredictable zig-zag behaviour of the nickel- 
ammonia system. On the other hand the average 
cooperativity data at I= 3 M (LiC104 are inter- 
polated by the line y = 0.32 t 0.7Oi with uY = 0.3. 
The trend is not so smooth as for nickel-ammonia 
system, with -0.7 kJ/mol per ligand added. The 
waving behaviour could indicate that the rearrange- 
ment of the bonds is not completely regular. By 
extrapolation of the data at different ionic strengths, 
Fedorov er al. [13] obtained the data reported in 
Table II for I= 0. The trend shows a striking simi- 
larity with the behaviour of the nickel-ammonia 
system. The average cooperativity free-energy per 
ligand added is 1.43 kJ/mol for uncorrected values 
and 0.56 kJ/mol for the corrected ones. The change 
of the cooperativity effect from a favourable value 
(Atip < 0) at high ionic strength to an anticoopera- 
tivity effect at null ionic strength clearly shows the 
strong interference between the external ligand- 
ligand interaction and the electrostatic forces acting 
in the solvent. 

A third example of cooperativity effect is offered 
by complexes with mixed ligands or heterotropic 
complexes. A set of compounds [14] formed by 
copper(I1) with dicarboxylates in conjunction with 
other ligands, has been chosen. 

The calculation of the statistical factor can be 
done by considering that the maximum number of 
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TABLE II. Average and Stepwise Cooperativity Effects in Bismuth(III)-Thiocyanato System at 25 “C in Aqueous Solutions with 
Different Ionic Strength? 

i lW Pi A& = -RT In Ky (kJ/mol) I = 3 M (LiC104 IOg pi A/J; = -R T In K, (kJ/mol) I = 0 M 

Average Stepwise Average Stepwise 

Uncorrected Corrected Uncorrected Corrected Uncorrected Corrected Uncorrected Corrected 

1 1.28 
2 2.61 
3 3.74 
4 5.2 
5 5.9 
6 6.9 

y=ai+b 

a 

b 

0 0 0 0 2.3 0 0 0 0 

-0.31 -1.39 -0.31 -1.39 3.7 2.05 0.97 2.05 0.97 
0.19 -1.78 0.91 -1.05 4.4 4.24 2.28 2.25 1.47 

-0.11 -2.87 -1.11 -3.87 5.2 5.19 2.43 -0.29 -1.00 
0.57 -2.98 2.17 -1.38 5.8 5.99 2.44 0.57 -0.21 
0.74 -3.70 0.86 -3.58 5.4 7.41 3.03 2.85 -0.23 

0.17 -0.70 0.28 
-0.42 0.32 -0.55 

0.80 0.97 0.45 
0.2 0.3 1.0 

-0.59 1.43 0.56 0.21 -0.66 
0.19 -0.86 -0.11 0.31 0.55 
0.73 0.98 0.93 0.30 0.13 
1.0 0.5 0.4 1.3 2.4 

aData from ref. 13. 

3 
-RTlllKf 

(kJ/mol) 2 4 I=OM 
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-4 

Fig. 8. Average cooperativity effect in the system 
bismuth(III)-thiocyanato in aqueous solution at 25 “C: v, 
ionic strength I = 0 M; 0, ionic strength I = 3 M (Li)C104. 

sites around the metal is 6, in octahedral arrange- 
ment. The data are reported in Table III and show 
how the cooperativity effect in these heterotropic 
complexes is favourable (Ago < 0). The values range 
from 0.3 to 5.7 kJ/mol and indicate that the energy 
involved is generally not very high. These values, 
however, as demonstrated by Weber [ 151, are enough 
to produce dramatic changes in the distribution of 
the complexes. 8 kJ/mol displace the equilibrium, 
e.g. MA + MB = MAB + M, toward the right or the 
left up to 90%. In the same Table the values of 
log KA [7] are reported. They indicate the displace- 
ment of the disproportionation reaction but do 
not put in evidence how the ligand-ligand inter- 
action free-energy is cooperative. Values of coopera- 
tivity enthalpy, Ah;!, and entropy, As;,, can be 
calculated (Table IV). 

On the other hand the homotropic complexes 
formed by the same carboxylato ligands with copper- 
(II) (Table V) show an anticooperativity effect 
(A$ > 0), but the positive values are of the same 

TABLE III. Heterotropic Cooperativity Effect in Metal 
Complexesa at 25 “C and I = 0.1 M 

Compound log K, log K,f A/+ 
(kJ/mol) 

Cu(bpy)(mal) 0.25 0.664 -3.19 
Cu(bpy)(succ) 0.24 0.659 -3.16 
Cu(bpy)(male) 0.36 0.719 -4.10 
Cu(bpy)(pht) 0.49 0.812 -4.63 
Cu(bpy)(ox) 0.70 0.889 -5.07 
Cu(bpy)(CPRD) 1.38 1.229 -7.01 
Cu(bpy)(CBUD) 1.11 1.094 -6.24 
Cu(bpy)(CPED) 0.26 0.669 -3.82 
Cu(bpy)(CHED) 0.29 0.684 -3.90 
Cu(OPDA)(mal) -0.36 0.359 -2.05 
Cu(OPDA)(succ) -0.39 0.344 - 1.96 
Cu(OPDA)(male) -0.29 0.394 -2.25 
Cu(OPDA)(ox) -0.37 0.354 - 2.02 
Cu(hm)(ox) -0.22 0.429 - 2.45 
Cu(hm)(mal) -0.49 0.294 -1.68 
Cu(hm)(succ) -0.31 0.384 -2.19 
Cu(hm)(ita) -0.35 0.364 - 2.08 
Cu(hm)(male) -0.29 0.394 - 2.25 
Cu(hm)(CBUD) -0.50 0.289 - 1.65 

‘Ligand A: bpy = 2,2’-bipyridyl, OPDA = ortho-phenylendi- 
amine, hm = histamine. Ligand B: ma1 = malonato, succ = suc- 
cinato , male = maleato, pht = phtalato, ox = oxalato, ita = 
itaconato, CPRD = cyclopropane-l,ldicarboxylato, CBUD = 
cyclobutane-l,ldicarboxylato, CPED = cyclopentane-1 ,l- 
dicarboxylato, CHED = cyclohexane-l,l-dicarboxylato. 
log KA = log K(MA + MB = MAB + M). log K,, = 
log~~~~"2/((K~~K~~)1'Zkst~y~~]}. Data from ref. 14. 

order of magnitude as the heterotropic complexes. 
The enthalpy contribution to cooperativity, ah;, 
in these cases is favourable (A/r; < 0). whereas 
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TABLE IV. Heterotropic Cooperativity Effect: Chemical Potential, A/.toy,, Enthalpy, a”,,, and Entropy, Asoy’, at 25 “C and 
I=O.l M 

Metal Ligand 

Aa Bb 

AH”MA AH”,i; c 

(kJ/mol) (kJ/mol) 
AHOMAB 
(kJ/mol) 

Ah”,, d 

(kJ/mol) 

APays 

(kJ/mol) 

Asoy’ e 

(J/mol K) 

CU CPRD bpy 3.766 -20.397 -45.982 -2.59 -7.01 14.8 

CU CBUD bpy 10.879 - 16.840 -36.400 -1.36 -6.24 16.4 

cu CPED bpy 13.598 -15.481 -35.980 -2.51 -3.82 0.4 

CU CHED bpy 14.184 -15.189 -35.606 -2.61 -3.90 0.4 

cu ma1 bpy 5.899 -19.330 -42.676 -2.01 -3.79 0.6 

cu pht bpy 10.293 -17.130 -33.860 0.20 -4.63 1.6 

cu male bpy 14.477 - 15.040 - 34.685 -2.30 -4.10 0.6 

cu oda bpy 14.895 - 14.832 -29.874 -0.10 -1.22 3.8 

cu thda bpy 4.058 -20.251 -40.711 -0.10 -2.65 8.6 

cu scda bpy 10.083 -17.238 -35.941 -0.66 -4.30 12.2 

cu thdp bpy 16.778 -13.891 -38.451 -5.34 -1.82 -11.8 

cu s&P bpy 15.104 - 14.728 -40.543 -5.54 -3.44 -7.1 

cu WCC bpy 11.464 -16.548 -42.676 -4.79 -3.76 -3.5 

aCPRD, CBUD, CPED, CHED, mal, pht, male, see Table III. oda = oxydiacetato, thda = thiodiacetato, succ = succinato, seda = 
selenodiacetato, thdp = thiodipropionato, sedp = selenodipropionato. ‘AHOME = (AH”MA + 

M”MB)/2. dahorj = ti”&+B/2 - ‘@MC. 

baHo~~ = -44.560 kJ/mol. 

eAsoy, = (Ahoy - A&O7 ,) x 1000/r; T= 298.12 K. Data from ref. 14. 

TABLE V. Homotropic Cooperativity Effect: Chemical Potential, Afioy, Enthalpy, Ahoy, and Entropy, Asoy, at 25 “C and I = 
0.1 M 

Metal Liganda moMA b @MAI a? Ah”, d Apoy ’ Asoy f 

(kJ/mol) (kJ/mol) (kJ/mol) (kJ/mol) (J/mol K) 

cu CPRD 3.766 4.059 -1.74 3.73 -18.3 

cu CBUD 10.878 13.765 -4.00 1.38 -18.1 

cu CPED 13.598 20.056 -3.56 2.89 -21.6 

cu CHED 14.184 21.297 -3.54 2.68 - 20.9 
cu ma1 5.899 5.104 -3.35 3.60 -23.3 

cu pht 10.293 15.690 -2.45 1.05 -11.7 

cu male 14.477 17.364 -5.80 1.21 -23.5 

YZPRD, CBUD, etc. see Table III. bti”~~ = aH”(M + A). = aH’(M + 2A). 

eA$y = AG ‘MA 12 
CaHaMA, dah”, = M’MA,/~ - A!~‘MA. 

Data from ref. 14. 
- AGOMA + Afiost(r), with Afiost(,) = 3.074 kJ/mol. Wy = (Ah”, - A$,) x 1000/T, T= 298.12 K. 

the entropy contribution is unfavourable (As;< 

0). 
It is important to emphasize the fact that the 

cooperativity effect exceeds the experimental error. 
A fourth example (Table VI) shows how the 

cooperativity effect in macromolecule-ligand equi- 
libria is of the same order of magnitude as the effects 
in metal-ligand complexes. Because small values of 

A& and ApoY, are sufficient to displace the equi- 
libria and because the cooperativity effects are 
closely connected with changes in the ionic medium, 
it is easy to explain why many examples are found of 
denaturation of proteins caused by changes of the 
ionic strength and many other examples in which 
coupling between inorganic, organic and biological 
reactions takes place. 

Conclusions 

The parameters i$. (homotropic) and K?l (hetero- 
tropic) and the thermodynamic quantities related to 
them are useful to evaluate the cooperativity effect. 

In multiligand complexes the best way to evaluate 
the cooperativity effect is to calculate the average 
cooperativity by 

Pilli KY _ 

K&t(q) 
(37) 

The corresponding chemical potential change ApoT 
can in fact be correlated with the number of occupied 
sites. On the contrary the stepwise cooperativity 
parameter 
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TABLE VI. Heterotropic Cooperativity Effect in Biochemical 

System? 

Protein Ligandb Accoy’ ’ 

A B 
(kJ/mol) 

tropic and heterotropic metal-ligand equilibria are 
of the same order of magnitude as those in macro- 
molecule-ligand equilibria and the corresponding 
reactions could be therefore coupled in real biological 
systems. 

Haemoglobin 02 2,3-DPG 2.12 
Haemoglobin 02 IHP 4.81 
Serum albumin, bovine ANS 3,5dbh 3.14 
Pyruvatokinase PEP K -2.51 
Pyruvate kinase K Mn(II) -2.93 
Pyruvate kinase Phenylal. Mn(II) 1.67 
Aspartatetransacarbamoylase CTP succ 1.05 
Lactate dehydrogenase, NADH ox -3.14 

chicken 

aData from ref. 15. bLigand A: ANS = l-anilinonaphtha- 
lene 8-sulphonato, PEP = phosphoenolpyruvato, CTP = 
cytidine triphosphato, NADH = hydrogennicotinamide- 
adenindinucleotide. Ligand B: 2,3-DPG = 2,3diphospho- 

glycerato, IHP = inositol hexaphosphato, 3,Sdhb = 3,5- 
dihydroxobenzoato, succ = succinato, ox = oxalato. ‘Not 
corrected for statistical factor. 

K = (KiKi-1)“’ 
7 

Ki -I kst (7) 
(38) 

is not clearly interpretable. 
The values of Ap”, and All’,, are significantly 

greater than the experimental error, at least in the 
cases examined. This circumstance should be verified 
whenever possible. 

The interference of the cooperativity effect with 
effects due to changes of the ionic strength confirms 
that the cooperativity effect should be mainly attrib- 
uted to external ligand-ligand interactions, exposed 
to the action of the solvent. The free-energy changes 
due to ligand-ligand interactions in both homo- 
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