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It has been known for some time that self-asso- 
ciation occurs in compounds of type VOX3 and 
[VOX4]-, where X is typically Cl- or an alkoxide ion, 
especially in the solid state and in non-polar solvents 
[ 1, 21. However, the solution structure of these com- 
plexes is not well understood [2]. Also, isopropoxy 
complexes have thus far been reported to be mono- 
meric [3], presumably due to steric repulsions. 

We have therefore studied the reaction of VOC13 
with potassium isopropoxide, under strictly anhy- 
drous conditions. Toluene was selected as the solvent 
to minimise the possibility of its coordination [2]. 
We first showed that ‘H NMR does not discrimi- 
nate adequately between the various species formed, 
and then proceeded by using ‘lV NMR at 105.2 MHz 
under standard conditions [4]. 

The displacement of Cl by isopropoxide (OiPr) 
proceeds stoichiometrically as far as VO(OiPr)3. The 
‘lV chemical shifts are listed in Table I and do not 
differ from those previously reported [3] by more 
than an amount attributable to the change of solvent. 
We found no evidence for the presence of species 
such as [VO(OiPr)C13]-, although minor components 
could possibly be hidden by exchange processes. 
The resonance of VO(OiPr)3 was notably the nar- 
rowest after VOC13, probably because of its higher 
symmetry. However, further reactions were observed 
upon addition of more KOiPr. At 228 K, where 
chemical exchange is reduced, a new resonance forms 

TABLE I. “V Chemical Shifts of Isopropoxy Vanadium(V) 
Species 

Species Solvent 6 Va Further details 

VO(OiPr)CIz 

VO(OiPr)&l 

VO(OiPr)3 

[ VO(OiPr)4]- 

P202(0iPrh- 

toluene -310 
CHC13 -307 

toluene -507 
CHC13 -503 

toluene -630 
benzene -641 

toluene -570 

toluene -401 - 

20 “C 
(ref. 3) 

20°C 
(ref. 3) 

20 “C, WHH = 80 Hz 
(ref. 3) 

20 “C, K+ salt 

-45 “C, K+ salt 

%apillary VOC13 = 0. 

-300 -400 -m -ml 

&/ppm 
Fig. 1. 51V NMR spectrum at -45 “C in toluene of an 
equilibrated mixture of (from left to right) ((iPr0)3VO- 
(OiPr)VO(OiPr)3]; [VO(OiPr)4]- and VO(OiPr)s. 

at -570 ppm, and is almost uniquely present when a 
large excess of KOiPr has been added. We identify 
this species as [VO(OiPr)4]-. The 60 ppm increase 
of 6, upon anation is consistent with the known shift 
of +SO ppm in this solvent for [VOC14]-. 

More surprisingly, a second, still broader resonance 
appears at -401 ppm (Fig. 1) and reaches maximum 
relative concentration when the concentrations of 
VO(OiPr)3 and [VO(OiPr)4]- are equal. The propor- 
tion of this new species varies with concentration in a 
manner consistent with the reaction 

VO(OiPr)3 + [VO(OiPr)4]- + [V2020iPr),]- 

K= 10405 130dm3mol-’ (1) 

But is the dimeric species bridged by [O]‘- or by 
[OiPr]? Our studies of a different oxo-bridged 
dimer, V203(NO3)4, suggest that such bridging does 
not have a large effect on the “V chemical shift [4]. 
Also, vanadium(V) is usually reluctant to lose its final 
coordinated oxygen. Instead, the data and especially 
the unusually high chemical shift of -401 ppm 
points to a bridging isopropoxide, probably single 
in view of the symmetry apparent from the NMR 
data. Vanadium shifts are usually increased, according 
to a recent theory [S], when at least one bond to V is 
lengthened (beyond CQ. 1.7 a), because this lowers 
the a* + u transition energy of the bond. This analy- 
sis is supported by our observation that the pale 
yellow solution darkens noticeably when dimer is 
present. Thus we propose a bridging isopropoxide, 
symmetrical at least on the NMR timescale, with sub- 
stantially lengthened V-O distances. 

When the temperature is raised, the proportion of 
this dimer decreases. (A crude calculation gave AH, = 
-13 kJ mol-’ for reaction (1) above). But in addi- 
tion, the resonances arising from the dimer and from 
VO(OiPr)3 broaden and eventually merge, whereas 
that from [VO(OiPr)4]- narrows as expected for a 
non-exchanging species. It follows that equation (1) 
cannot represent the actual kinetic process involved. 
Instead, by analogy with our earlier observations on 
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vanadates [6] and thiovanadates [5], we propose an 
exchange reaction 

V*O(OiPr)a + [(iPr0)3VO(OiPr)VO(OiPr)3]-+ 

VO(OiPr)s + [(iPrO)aV*O(OiPr)VO(OiPr),l- 

The corresponding reaction involving [VO(OiPr)4]- 
is substantially less likely, because of anion-anion 
repulsions, and therefore the peak at -570 ppm is 
not observed to broaden. 

It is surprising that an isopropoxide anion should 
succeed in bridging two VO(OiPr)s moieties, whereas 
Cl- apparently does not. The explanation of this may 
be related to that of recently substantiated observa- 
tions [7, 81 that vanadium-containing polyanions 
protonate at bridging oxygen sites. 
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