Formation and Exchange Reaction of the Vanadium-(V) Dimer  $[V_2O_2(0-i-C_3H_7)_7]^-$ 

OLIVER W. HOWARTH and JOHN R. TRAINOR

Department of Chemistry, University of Warwick , Coventry CV4 7AL, U.K.

(Received September 1, 1986)

It has been known for some time that self-association occurs in compounds of type VOX<sub>3</sub> and  $[VOX_4]^-$ , where X is typically Cl<sup>-</sup> or an alkoxide ion, especially in the solid state and in non-polar solvents [1, 2]. However, the solution structure of these complexes is not well understood [2]. Also, isopropoxy complexes have thus far been reported to be monomeric [3], presumably due to steric repulsions.

We have therefore studied the reaction of VOCl<sub>3</sub> with potassium isopropoxide, under strictly anhydrous conditions. Toluene was selected as the solvent to minimise the possibility of its coordination [2]. We first showed that <sup>1</sup>H NMR does not discriminate adequately between the various species formed, and then proceeded by using <sup>51</sup>V NMR at 105.2 MHz under standard conditions [4].

The displacement of Cl by isopropoxide (OiPr) proceeds stoichiometrically as far as  $VO(OiPr)_3$ . The <sup>51</sup>V chemical shifts are listed in Table I and do not differ from those previously reported [3] by more than an amount attributable to the change of solvent. We found no evidence for the presence of species such as  $[VO(OiPr)Cl_3]^-$ , although minor components could possibly be hidden by exchange processes. The resonance of  $VO(OiPr)_3$  was notably the narrowest after  $VOCl_3$ , probably because of its higher symmetry. However, further reactions were observed upon addition of more KOiPr. At 228 K, where chemical exchange is reduced, a new resonance forms

TABLE I. <sup>51</sup>V Chemical Shifts of Isopropoxy Vanadium(V) Species

| Species                  | Solvent           | $\delta v^a$ | Further details              |
|--------------------------|-------------------|--------------|------------------------------|
| VO(OiPt)Cl <sub>2</sub>  | toluene           | -310         | 20 °C                        |
|                          | CHCl <sub>3</sub> | -307         | (ref. 3)                     |
| VO(OiPr) <sub>2</sub> Cl | toluene           | -507         | 20 °C                        |
|                          | CHCl <sub>3</sub> | -503         | (ref. 3)                     |
| VO(OiPr) <sub>3</sub>    | tol <b>uene</b>   | -630         | 20 °C, WHH = 80 Hz           |
|                          | benzene           | -641         | (ref. 3)                     |
| [VO(OiPr)4] <sup>-</sup> | toluene           | -570         | 20 °C, K <sup>+</sup> salt   |
| $[V_2O_2(OiPr)_7]^-$     | toluene           | -401         | – 45 °C, K <sup>+</sup> salt |

<sup>a</sup>Capillary VOCl<sub>3</sub> = 0.

0020-1693/87/\$3.50



Fig. 1. <sup>51</sup>V NMR spectrum at -45 °C in toluene of an equilibrated mixture of (from left to right) [(iPrO)<sub>3</sub>VO-(OiPr)VO(OiPr)<sub>3</sub>]<sup>-</sup>, [VO(OiPr)<sub>4</sub>]<sup>-</sup> and VO(OiPr)<sub>3</sub>.

at -570 ppm, and is almost uniquely present when a large excess of KOiPr has been added. We identify this species as  $[VO(OiPr)_4]^-$ . The 60 ppm increase of  $\delta_V$  upon anation is consistent with the known shift of +50 ppm in this solvent for  $[VOCl_4]^-$ .

More surprisingly, a second, still broader resonance appears at -401 ppm (Fig. 1) and reaches maximum relative concentration when the concentrations of VO(OiPr)<sub>3</sub> and [VO(OiPr)<sub>4</sub>]<sup>-</sup> are equal. The proportion of this new species varies with concentration in a manner consistent with the reaction

$$VO(OiPr)_3 + [VO(OiPr)_4]^- \rightleftharpoons [V_2O_2OiPr)_7]^-$$
  

$$K = 1040 \pm 130 \text{ dm}^3 \text{ mol}^{-1}$$
(1)

But is the dimeric species bridged by  $[O]^{2-}$  or by [OiPr]<sup>¬</sup>? Our studies of a different oxo-bridged dimer,  $V_2O_3(NO_3)_4$ , suggest that such bridging does not have a large effect on the  ${}^{51}V$  chemical shift [4]. Also, vanadium(V) is usually reluctant to lose its final coordinated oxygen. Instead, the data and especially the unusually high chemical shift of -401 ppm points to a bridging isopropoxide, probably single in view of the symmetry apparent from the NMR data. Vanadium shifts are usually increased, according to a recent theory [5], when at least one bond to V is lengthened (beyond ca. 1.7 Å), because this lowers the  $\sigma^* \leftarrow \sigma$  transition energy of the bond. This analysis is supported by our observation that the pale yellow solution darkens noticeably when dimer is present. Thus we propose a bridging isopropoxide, symmetrical at least on the NMR timescale, with substantially lengthened V-O distances.

When the temperature is raised, the proportion of this dimer decreases. (A crude calculation gave  $\Delta H_f = -13 \text{ kJ mol}^{-1}$  for reaction (1) above). But in addition, the resonances arising from the dimer and from VO(OiPr)<sub>3</sub> broaden and eventually merge, whereas that from [VO(OiPr)<sub>4</sub>]<sup>-</sup> narrows as expected for a non-exchanging species. It follows that equation (1) cannot represent the actual kinetic process involved. Instead, by analogy with our earlier observations on

© Elsevier Sequoia/Printed in Switzerland

vanadates [6] and thiovanadates [5], we propose an exchange reaction

$$V^{*}O(OiPr)_{3} + [(iPrO)_{3}VO(OiPr)VO(OiPr)_{3}]^{-} \rightleftharpoons$$

$$VO(OiPr)_3 + [(iPrO)_3V*O(OiPr)VO(OiPr)_3]^{-1}$$

The corresponding reaction involving  $[VO(OiPr)_4]^-$  is substantially less likely, because of anion-anion repulsions, and therefore the peak at -570 ppm is not observed to broaden.

It is surprising that an isopropoxide anion should succeed in bridging two  $VO(OiPr)_3$  moieties, whereas  $CI^-$  apparently does not. The explanation of this may be related to that of recently substantiated observations [7, 8] that vanadium-containing polyanions protonate at bridging oxygen sites.

## References

- 1 D. C. Bradley, Prog. Inorg. Chem. Radiochem., 15, 259 (1972).
- 2 C. Weidemann and D. Rehder, *Inorg. Chim. Acta*, (1986) in press.
- 3 W. Priebsch and D. Rehder, *Inorg. Chem.*, 24, 3058 (1985).
- R. C. Hibbert, N. Logan and O. W. Howarth, J. Chem. Soc., Dalton Trans., 369 (1986).
   A. T. Harrison and O. W. Howarth, J. Chem. Soc., Dalton
- 5 A. T. Harrison and O. W. Howarth, J. Chem. Soc., Dalton Trans., 1405 (1986).
- 6 E. Heath and O. W. Howarth, J. Chem. Soc., Dalton Trans., 1105 (1981).
- 7 R. G. Finke, B. Rapko, R. J. Saxton and P. J. Domaille, J. Am. Chem. Soc., 108, 2947 (1986).
- 8 W. G. Klemperer and W. Shum, J. Am. Chem. Soc., 100, 4891 (1978).