Formation and Exchange Reaction of the Vanadium- (V) Dimer $[V_2O_2(O \text{-}i-C_3H_7)_7]$

OLIVER W. HOWARTH and JOHN R. TRAINOR

Department of Chemistry, University of Warwick , *Coventry CV4 7AL, U.K.*

(Received September 1, 1986)

It has been known for some time that self-association occurs in compounds of type $VOX₃$ and $[VOX₄]$, where X is typically Cl⁻ or an alkoxide ion, especially in the solid state and in non-polar solvents $[1, 2]$. However, the solution structure of these complexes is not well understood [2]. Also, isopropoxy complexes have thus far been reported to be monomeric [3], presumably due to steric repulsions.

We have therefore studied the reaction of VOCl₃ with potassium isopropoxide, under strictly anhydrous conditions. Toluene was selected as the solvent to minimise the possibility of its coordination [2]. We first showed that ¹H NMR does not discriminate adequately between the various species formed, and then proceeded by using ⁵¹V NMR at 105.2 MHz under standard conditions [4].

The displacement of Cl by isopropoxide (OiPr) roceeds stoichiometrically as far as $VO(OiPr)_3$. The ¹V chemical shifts are listed in Table I and do not differ from those previously reported [3] by more than an amount attributable to the change of solvent. We found no evidence for the presence of species such as $[VO(OiPr)Cl₃]$, although minor components could possibly be hidden by exchange processes. The resonance of $VO(OiPr)_3$ was notably the narrowest after $VOCl₃$, probably because of its higher symmetry. However, further reactions were observed upon addition of more KOiPr. At 228 K, where chemical exchange is reduced, a new resonance forms

TABLE I. ⁵¹V Chemical Shifts of Isopropoxy Vanadium(V) Species

Species	Solvent	δv^a	Further details
VO(OiPr)Cl ₂	toluene CHCl ₃	-310 -307	20° C (ref. 3)
$VO(OiPr)_{2}Cl$	toluene $CHCl3$ -503	-507	$20 \degree$ C (ref. 3)
$VO(OiPr)_3$	toluene benzene	-630 -641	$20 °C$, WHH = 80 Hz (ref. 3)
$[VO(OiPr)_4]^-$	toluene	-570	20° C, K ⁺ salt
$[V_2O_2(OiPr)_7]$	toluene	-401	-45 °C, K ⁺ salt

^aCapillary VOCl₃ = 0.

Fig. 1. $51V$ NMR spectrum at -45 °C in toluene of an equilibrated mixture of (from left to right) $[(iP_IO)₃VO (OiPr)VO(OiPr)_{3}]^{-}$, $[VO(OiPr)_{4}]^{-}$ and $VO(OiPr)_{3}$.

at -570 ppm, and is almost uniquely present when a large excess of KOiPr has been added. We identify this species as $[VO(OiPr)_4]^-$. The 60 ppm increase of δ_{V} upon anation is consistent with the known shift of +50 ppm in this solvent for $[VOCl_4]^-$.

More surprisingly, a second, still broader resonance appears at -401 ppm (Fig. 1) and reaches maximum relative concentration when the concentrations of $VO(OiPr)_3$ and $[VO(OiPr)_4]^-$ are equal. The proportion of this new species varies with concentration in a manner consistent with the reaction

$$
VO(OiPr)3 + [VO(OiPr)4] = \implies [V2O2OiPr)7]-
$$

K = 1040 ± 130 dm³ mol⁻¹ (1)

But is the dimeric species bridged by $[0]^{2-}$ or by [OiPr]? Our studies of a different oxo-bridged dimer, $V_2O_3(NO_3)_4$, suggest that such bridging does not have a large effect on the $51V$ chemical shift [4]. Also, vanadium(V) is usually reluctant to lose its final coordinated oxygen. Instead, the data and especially the unusually high chemical shift of -401 ppm points to a bridging isopropoxide, probably single in view of the symmetry apparent from the NMR data. Vanadium shifts are usually increased, according to a recent theory $[5]$, when at least one bond to V is lengthened (beyond ca . 1.7 Å), because this lowers the $\sigma^* \leftarrow \sigma$ transition energy of the bond. This analysis is supported by our observation that the pale yellow solution darkens noticeably when dimer is present. Thus we propose a bridging isopropoxide, symmetrical at least on the NMR timescale, with substantially lengthened V -O distances.

When the temperature is raised, the proportion of this dimer decreases. (A crude calculation gave ΔH_f = -13 kJ mol⁻¹ for reaction (1) above). But in addition, the resonances arising from the dimer and from VO(OiPr)3 broaden and eventually merge, whereas hat from $[VO(OiPr)_4]^-$ narrows as expected for a non-exchanging species. It follows that equation (1) cannot represent the actual kinetic process involved. Instead, by analogy with our earlier observations on

0020-1693/87/\$3.50 0 Elsevier Sequoia/Printed in Switzerland

vanadates [6] and thiovanadates [5], we propose an exchange reaction

$V^*O(OiPr)_3 + [(iPrO)_3VO(OiPr)VO(OiPr)_3]^- \rightleftharpoons$

$$
VO(OiPr)3 + [(iPrO)3V*O(OiPr)VO(OiPr)3]
$$

The corresponding reaction involving $[VO(OiPr)_4]^$ is substantially less likely, because of anion-anion repulsions, and therefore the peak at -570 ppm is not observed to broaden.

It is surprising that an isopropoxide anion should succeed in bridging two $VO(\overrightarrow{OiPr})_3$ moieties, whereas Cl⁻ apparently does not. The explanation of this may be related to that of recently substantiated observations [7, 8] that vanadium-containing polyanions protonate at bridging oxygen sites.

References

- D. C. Bradley, *Prog. Inorg. Chem. Radiochem., 15, 259* (1972).
- C. Weidemann and D. Rehder, *Inorg. Chim. Acta,* (1986) in press.
- W. Priebsch and D. Rehder, *Inorg. Chem., 24, 3058* (1985).
- R. C. Hibbert, N. Logan and 0. W. Howarth, J. *Chem. Sot., Dalton Trans., 369 (1986).*
- A. T. Harrison and 0. W. Howarth, J. *Chem. Sot., Dalton Trans., 1405* (1986).
- E. Heath and 0. W. Howarth, *J. Chem. Sot., Dalton Trans., 1105* (1981).
- R. G. Finke, B. Rapko, R. J. Saxton and P. J. Domaille, J. *Am. Chem. Sot., 108, 2947* (1986).
- W. G. Klemperer and W. Shum, J. *Am. Chem. Sot., 100, 4891* (1978).