Complexes with the Di- μ -alkoxy-tetrakisphenyldiazenido-dimolybdenum Core, $[Mo_2(NNPh)_4(OR)_2]^{2+}$. The Synthesis and Structural Characterization of the Phenylhydrazino-derivative, $[Mo_2(NNPh)_4(OMe)_4-(H_2NNHPh)_2]$

TZE-CHEN HSIEH and JON ZUBIETA*

Department of Chemistry, State University of New York at Albany, Albany, N.Y. 12222, U.S.A. (Received September 12, 1986)

The organodiazenido-group, --NNR, is of intrinsic chemical interest as a model for understanding the chemistry of metal-bound dinitrogen and NO [1]. The organodiazenido-group is known to form robust complexes with molybdenum, often displacing oxogroups to give the cis-[Mo(NNR)₂]²⁺ structural unit [2]. We have recently extended this chemistry to the polyoxomolybdates with the characterization of species of the type $[Mo_4O_8(OR)_2(NNR)_4]^{2-1}$ [3]. At the time, we speculated on the potential utility of the [Mo₂(NNR)₄(OR)₂]²⁺ unit of this species as a core for further synthetic and structural studies. Immediately thereafter, details of the synthesis and structural characterization of [Mo₂(NN- $Ph_4(OMe_2(acac)_2)$ were reported [4]. Although the synthetic approach to this latter complex varied from that employed in our studies, it did suggest the potential for varied chemistry for the [Mo2- $(NNPh)_4(OR)_2]^{2+}$ unit. We report herein the synthesis and structural characterization of [Mo2(NN- $Ph_4(OMe_4(H_2NNHPh_2)]$, a species containing this core and exhibiting molybdenum-hydrazino coordination, to our knowledge the first example of a molybdenum-diazenido-hydrazino complex.

Reaction of $(Bu^n_4N)_2[Mo_4O_8(OMe)_2NNPh)_4]$ with phenylhydrazine in methanol yields lustrous black crystals of $[Mo_2(NNPh)_4(OMe)_4(H_2NNHPh)_2]$. The infrared spectrum shows bands at 1605 and 1565 cm⁻¹ characteristic of $\nu(N-N)$ for *cis* coordination of the diazenido groups. The band at 2815 cm⁻¹ is associated with $\nu(C-H)$ for the bridging methoxy-groups and the medium intensity bands at 3210 and 3385 cm⁻¹ are assigned for $\nu(N-H)$ for the coordinated H₂NNHPh ligand. The complex may also be synthesized by reaction of $[MoO_2(2,3-butanediolate)_2] \cdot 2butane-2,3-diol [5] with excess$ phenylhydrazine in methanol. Analogous reactions $in ethanol/chloroform yield the species <math>[Mo_2(NN-Ph)_4(OEt)_2Cl_2(HOEt)_2]$ [6].

Crystal Data: $[Mo_2(NNPh)_4(OMe)_4(H_2NNHPh)_2]$, monoclinic space group $P2_1/n$, a = 11.437(2), b = 12.004(2), c = 16.756(3) Å, $\beta = 108.45(1)^{\circ}$, V = 2182.2(6) Å³, Z = 2 to give $D_c = 1.45$ g cm⁻¹. Structure solution and refinement based on 2009 reflections with $I_o \ge 3\sigma I_o$ converged at R = 0.047, with a goodness of fit of 1.657.

The structure of [Mo₂(NNPh)₄(OMe)₄(H₂NNH-Ph)₂], illustrated in Fig. 1 consists of binuclear molecular units lying on a center of symmetry, with two chemically and crystallographically related [Mo-(NNPh)₂(OCH₃)(H₂NNHPh)] moieties linked by two bridging methoxy-groups. The coordination geometry about the molybdenum is distorted octahedral, generated by ligation to the α -N donors of two phenyldiazenido units, to the two bridging methoxy and the one terminal methoxy groups, and to the a-N of the phenylhydrazino-ligand, H₂NNH-Ph. The location of a center of symmetry on the mid-point of the Mo-Mo' vector imposes planarity on the Mo-O2-Mo'-O2' rhombus. The entire $[Mo_2(OCH_3)_2(NN-)_4]$ moiety of the central core is essentially planar, such that the complex [Mo2-(NNPh)₄(OMe)₄(H₂NNHPh)₂] is structurally related to the { $[Mo_2(NNPh)_4(OMe)_2][MoO_4]_2$ }²⁻ pre-cursors, that is $[Mo_4O_8(OMe)_2(NNPh)_4]^{2-}$, by substitution of the capping $[MoO_4]^{2-}$ units by two terminal methoxy groups and two phenylhydrazinoligands.

The short Mo--N(diazenido) distances, 1.823(6) Å (average), together with the average N-N distance of 1.243(9) Å and the essentially linearity of the Mo-N-N unit for the two diazenido ligands, are

Fig. 1. ORTEP view of the structure of $[Mo_2(NNPh)_4$ -(OMe)₄(H₂NNHPh)₂], showing the atom labelling scheme. Relevant bond lengths (Å) and angles (°): Mo-O1, 1.990(5); Mo-O2, 2.110(4); Mo-N1, 2.265(5); Mo-N3, 1.816(6); Mo-N5, 1.829(6); Mo-O2', 2.125(4); N1-N2, 1.445(9); N3-N4, 1.242(8); N5-N6, 1.243(9); N1-Mo-O1, 163.9(2); N3-Mo-O2', 167.4(2); N5-Mo-O2, 166.8(2); O2-Mo-O2', 72.9(2); Mo-N1-N2, 115.4(3); Mo-N3-N4, 170.9(5); Mo-N5-N6, 161.0(5).

© Elsevier Sequoai/Printed in Switzerland

^{*}Author to whom correspondence should be addressed.

TABLE I. Comparison of Structural Parameters for Complexes Possessing the $[Mo_2(NNPh)_4(OR)_2]^{2+}$ Core, of the Types $[Mo_2(NNPh)_4(OR)_2X_2L_2]^{n-}$ and $[Mo_2(NNPh)_4(OR)_2(LL)_2]^{n-a}$

Complex	Mo-Mo (Å)	Mo–N(diazenido) (Å)	MoO(bridge) (Å)	Mo-X or Mo-L ^b (Å)
$\{Mo_2(NNPh)_4(OMe)_2\} MoO_4 \}_2^{2-}$	3.465(2)	1.823(9) (ave.)	2.140(8) (ave.)	2.063(8) (O)
$[Mo_2(NNPh)_4(OMe)_4(H_2NNHPh)_2]$	3.406(1)	1.823(7) (ave.)	2.118(6) (ave.)	1.990(5) (O)
				2.265(5) (N)
$[Mo_2(NNPh)_4(OEt)_2(HOEt)_2Cl_2]$	3.407(1)	1.825(6) (ave.)	2.109(4)	2.440(2) (Cl)
				2.148(5) (O) ^c
[Mo ₂ (NNPh) ₄ (OMe) ₂ (acac) ₂]	3.296(3)	1.806(14) (avc.)	2.089(11)	2.055(8) (O)
				2.167(7) (O)

^aX = monoanionic ligand; L = neutral ligand; LL = bidentate ligand. ^bX and L refer to fifth and sixth ligands coordinated to each Mo-center of the $[Mo_2(NNPh)_4(OR)_2]^{2+}$ core. Donor atom is identified in parenthesis. ^cRefers to oxygen donor of terminally coordinated ethanol ligand.

common to this grouping and indicative of extensive delocalization throughout the unit. The Mo-N1-(phenylhydrazine) distance of 2.265(5) Å is consistent with a molybdenum-nitrogen single bond, while the N1-N2 distance of 1.445(9) Å is similar to that observed for N-N single bonds in organo-hydrazines.

Although the $[Mo_2(NNPh)_4(OR)_2]^{2+}$ core is common to the structures of $[Mo_4O_8(OR)_2(NN-Ph)_4]^{2--}$, $[Mo_2(NNPh)_4Cl_2(OEt)_2(HOEt)_2]$, $[Mo_2-(NNPh)_4(OMe)_4(H_2NNHPh)_2]$ and $[Mo_2(NNPh)_4-(OMe)_2(acac)_2]$, two distinct structural forms are observed. While the first three examples exhibit a planar $[Mo_2(OR)_2(NN-)_4]^{2+}$ moiety, the latter example presents a $[Mo_2(OMe)_2(NNPh)_4]^{2+}$ core with one phenyldiazenido-group on each Mo center rotated 90° to occupy a position axial to the plane of the $[Mo_2(NNPh)_2(OMe)_2]$ unit, in order to accommodate the terminally coordinated planar bidentate acac ligands. Table I compares bonding parameters for the four structures.

These observations suggest that the $[Mo_2(NN-Ph)_4(OR)_2]^{2+}$ unit provides a chemically robust and structurally flexible core, which may be prevalent in structures of the general types $[Mo_2(NNPh)_4-(OR)_2X_2L_2]^{n-}$ and $[Mo_2(NNPh)_4(OR)_2(LL)_2]^{n-}$ (n = 0 or -2, depending on the nature of the coligands X, L or LL). In future publications, we will discuss the details of the syntheses and structural characteristics of this growing class of complexes, representatives of a general type with chemistry potentially as extensive as that of the well-known μ -oxo-tetraoxodimolybdenum core, $[Mo_2O_5]^{2^+}$.

Acknowledgement

This research is supported by a grant from the National Science Foundation (CHE 8514634) to J.Z.

References

- 1 D. Sutton, Chem. Soc. Rev., 4, 443 (1975).
- P. L. Dahlstrom, J. R. Dilworth, P. Shulman and J. Zubieta, *Inorg. Chem.*, 21, 933 (1982); F. J. Lalor, D. Condon, G. Ferguson and M. A. Khan, *Inorg. Chem.*, 20, 2178 (1981); G. Ferguson, B. L. Ruhl, F. J. Lalor and M. E. Deane, J. Organomet. Chem., 286, 75 (1985); T.-C. Ilsieh and J. Zubieta, *Inorg. Chim. Acta*, 99, L47 (1985); S. N. Shaikh and J. Zubieta, *Inorg. Chim. Acta*, 115, L19 (1986).
- 3 T.-C. Hsieh and J. Zubieta, *Inorg. Chem.*, 24, 1288 (1985); T.-C. Hsieh and J. Zubieta, *Polyhedron*, 5, 305 (1986).
- 4 D. Carillo, P. Gouzerh and Y. Jeannin, Nouv. J. Chim., 9, 749 (1985).
- 5 R. J. Butcher, B. R. Penfold and E. Sinn, J. Chem. Soc., Dalton Trans., 668 (1979).
- 6 T.-C. Hsieh and J. Zubieta, unpublished results.