Visible Spectra of the Complex Species $Ni(en)_3^{2+}$, $Ni(en)_2(H_2O)_2^{2+}$ and $Ni(en)(H_2O)_4^{2+}$ from Kinetic Studies

K. J. WANNOWIUS, K. KRIMM and H. ELIAS*

Anorganische Chemie III, Eduard-Zintl-Institut, Technische Hochschule Darmstadt, D-6100 Darmstadt, F.R.G.

(Received October 3, 1986)

It has been shown by several authors [1-3] that acid hydrolysis of the complex cation Ni(en)₃²⁺ (en = 1,2-diamino-ethane) is a three-step process which follows reaction (1):

$$\operatorname{Ni}(\operatorname{en})_{3}^{2+} \xrightarrow{k_{1}} \operatorname{Ni}(\operatorname{en})_{2}(\operatorname{H}_{2}\operatorname{O})_{2}^{2+} \xrightarrow{k_{2}} \operatorname{Ni}(\operatorname{en})(\operatorname{H}_{2}\operatorname{O})_{4}^{2+} \xrightarrow{k_{3}} \operatorname{Ni}(\operatorname{H}_{2}\operatorname{O})_{6}^{2+}$$
(1)

At 25 °C the following rate data were obtained [1]:

 $k_1 = 86.6 \text{ s}^{-1}; k_2 = 5.2 \text{ s}^{-1}; k_3 = 0.145 \text{ s}^{-1}$

Applying a rapid-scanning spectrometer Moore *et al.* [3] reported values of λ_{max} (wavelength of maximum absorption) and ϵ_{max} (absorption coefficient at λ_{max}) for the species Ni(en)₂(H₂O)₂²⁺ and Ni-(en)(H₂O)₄²⁺. These data were taken from the spectra obtained at intermediate stages of the hydrolysis process.

The present contribution presents data for λ_{max} and ϵ_{max} of the above mentioned species which were obtained by studying reaction (1) with a newly designed, high resolution rapid-scan-stopped-flow spectrophotometer [4] and by analyzing a total of 90 spectra with a computer program producing time-independent values of λ_{max} and ϵ_{max} for the intermediates.

Experimental

In the stopped-flow experiment equal amounts of a 0.10 M Ni(en)₃²⁺ solution (0.10 M in reagent grade NiCl₂·6H₂O and 0.355 M in freshly distilled 'en', which corresponds to 18% excess of the ligand) and of 1.0 M HCl were mixed.

The set-up and the specifications of the rapidscan-stopped-flow spectrophotometer have been described elsewhere [4]. In the stopped-flow experiment a total of 90 spectra were taken in the wavelength range 304-725 nm. The absorbance/time

Fig. 1. Spectral changes observed for the various stages of reaction (1) at 5 °C with Δt (time interval between 2 consecutive spectra) being 30 ms (spectra 1–10), 600 ms (spectra 11–20) and 15 s (spectra 21–30).

data at 5 different wavelengths were fitted to function (2), which led to values for a_0 , a_1 , a_2 , a_3 and

$$A = a_0 + a_1 \exp(-k_1 t) + a_2 \exp(-k_2 t) + a_3 \exp(-k_3 t)$$
(2)

averaged values for k_1 , k_2 , k_3 by an iteration procedure. On the basis of the averaged rate constants the amplitudes a_i for all wavelengths (*i.e.*, the complete spectra) were calculated. The spectra of all four species involved in reaction (1) were finally calculated on the basis of the amplitudes a_i .

Results and Discussion

Figure 1 presents every third spectrum out of a total of 90 spectra taken in a typical stopped-flow experiment. The spectra were taken at three different time bases, Δt (time interval between two consecutive spectra) being 10 ms in the beginning (spectra 1-29), 200 ms in the middle (spectra 30-59) and 5 s at the end (spectra 60-89). It is obvious that during the hydrolysis process the spectra are red-shifted, in both the wavelength range 350-400 nm (${}^{3}T_{1}(P) \leftarrow {}^{3}A_{2}$) and 550-650 nm (${}^{3}T_{1}(F) \leftarrow {}^{3}A_{2}$). This red-shift is accompanied by a loss in intensity for both absorption bands.

Computer fitting of the absorbance/time data to eqn. (2) at 5 different wavelengths leads to the rate constants listed in Table I. It follows that the rate of hydrolysis decreases with decreasing numbers of chelate ligands being coordinated, *i.e.*, $k_1:k_2:k_3$ = 533:30:1. The comparison with the rate constants reported in the literature [1,3] suffers from the fact that the studies were carried out at different temperatures. Using the activation energies pre-

© Elsevier Sequoia/Printed in Switzerland

^{*}Author to whom correspondence should be addressed.

$k_1 (s^{-1})$	k_2 (s ⁻¹)	$k_{3}(s^{-1})$	k ₁ /k ₂	k_2/k_3	Reference
11.4 ± 1.0	0.645 ± 0.014	0.0214 ± 0.0011	17.7	30.1	this work
11	0.54	0.015	20.6	36.0	1 a
6.8	0.28	0.013	24.3	21.5	3 a

TABLE I. Rate Constants for Reaction (1) at 5 °C

^aRate constants at 5 °C calculated from those at higher temperature with the activation energies given in ref. 1.

TABLE II. Wavelengths of Maximum Absorption (λ_{max}) and Absorption Coefficients (ϵ_{max}) of the Species Involved in Reaction (1)

Species	${}^{3}T_{1}(P) \leftarrow {}^{3}A_{2}$		${}^{3}T_{1}(F) \leftarrow {}^{3}A_{2}$		Reference
	λ _{max} (nm)	€max (nm)	λ _{max} (nm)	ϵ_{max} (M ⁻¹ cm ⁻¹)	
Ni(en) ₃ ²⁺	343.8 ± 1	7.7	542.8 ± 1	6.2	this work
	345 ± 5	7.8	550 ± 5	6.0	3
$Ni(en)_2(H_2O)_2^{2+}$	356.4 ± 1	7.9	570.1 ± 1	5.2	this work
	360 ± 5	7.8	570 ± 5	5.0	3
$Ni(en)(H_2O)_4^{2+}$	371.5 ± 1	6.6	620.5 ± 1	4.1	this work
	373 ± 5	6.7	625 ± 5	3.8	3
$Ni(H_2O)_6^{2+}$	388.3 ± 1	5.3	651.8 ± 1	1.9	this work
	390 ± 5	5.1	650 ± 5	1.6	3

Fig. 2. Visible spectra of the species $Ni(en)_3^{2+}$ (1), $Ni(en)_{2^-}$ (H₂O)₂²⁺ (2), $Ni(en)(H_2O)_4^{2+}$ (3) and $Ni(H_2O)_6^{2+}$ (4) at 5 °C.

sented by Wilkins *et al.* [1] for converting all rate constants to 5 $^{\circ}$ C one obtains the data given in Table I. Considering the errors involved (the activation parameters have an error of more than 5%) the agreement is acceptable.

Computer approximation of the absorption coefficients ϵ of all four species involved in reaction (1) leads to the spectra shown in Fig. 2 and to the values of λ_{max} and ϵ_{max} listed in Table II. These values prove indeed the red-shift and the loss in intensity which accompanies the loss of coordinated chelate ligands, *i.e.*, the stepwise transition from the NiN₆ coordination to the NiO₆ coordination. Due to the fact that the resolution of the diode array spectrophotometer used in this work (0.8 nm/diode) is much better than that of the set-up used by Moore *et al.* [3] the error in λ_{max} is only ± 1 nm. In addition, the way in which the spectra of the intermediates were calculated (see 'Experimental') excludes any contributions from other species. The agreement between the values for λ_{max} and ϵ_{max} obtained in this work and those obtained from intermediate spectra [3] is nevertheless sufficiently good.

The intermediate Ni(en)₂(H₂O)₂²⁺ could possibly exist in the *cis* or *trans* forms. It follows from the experimental evidence presented by Moore *et al.* [3] that the observed spectrum of the species Ni(en)₂(H₂O)₂²⁺ corresponds well with that of known *cis* octahedral species.

Acknowledgements

The authors thank the Deutsche Forschungsgemeinschaft and the Verband der Chemischen Industrie e.V. for support.

References

- 1 A. K. Shamsuddin Ahmed and R. G. Wilkins, J. Chem. Soc., 2901 (1960).
- 2 J. P. Jones and D. W. Margerum, J. Am. Chem. Soc., 92, 470 (1970).
- 3 T. J. Kemp, P. Moore and G. R. Quick, J. Chem. Soc., 1377 (1979).
- 4 K. J. Wannowius, F. Sattler and H. Elias, GIT-Fachzeitschrift für das Laboratorium, 29, 1138 (1985).