K. J. WANNOWIUS, K. KRIMM and H. ELIAS*

Anorganische Chemie III, Eduard-Zintl-Institut, Technische Hochschule Darmstadt, D-6100 Darmstadt, F.R.G.

(Received October 3, 1986)

It has been shown by several authors $[1-3]$ that acid hydrolysis of the complex cation Ni(en)₃²⁺ (en = 1,2-diamino-ethane) is a three-step process which follows reaction (1):

$$
\text{Ni(en)}_{3}^{2+} \xrightarrow{k_{1}} \text{Ni(en)}_{2}(H_{2}O)_{2}^{2+} \xrightarrow{k_{2}} \text{Ni(H}_{2}O)_{6}^{2+} \qquad (1)
$$
\n
$$
\text{Ni(en)}(H_{2}O)_{4}^{2+} \xrightarrow{k_{3}} \text{Ni(H}_{2}O)_{6}^{2+} \qquad (1)
$$

At 25 $^{\circ}$ C the following rate data were obtained [1]:

 $k_1 = 86.6 \text{ s}^{-1}$; $k_2 = 5.2 \text{ s}^{-1}$; $k_3 = 0.145 \text{ s}^{-1}$

Applying a rapid-scanning spectrometer Moore et *al.* [3] reported values of λ_{max} (wavelength of maximum absorption) and ϵ_{max} (absorption coefficient at λ_{max}) for the species Ni(en)₂(H₂O)₂²⁺ and Ni- $(\text{en})(\text{H}_2\text{O})_4^2$ ⁺. These data were taken from the spectra obtained at intermediate stages of the hydrolysis process.

The present contribution presents data for λ_{max} and ϵ_{max} of the above mentioned species which were obtained by studying reaction (1) with a newly designed, high resolution rapid-scan-stopped-flow spectrophotometer [4] and by analyzing a total of 90 spectra with a computer program producing time-independent values of λ_{max} and ϵ_{max} for the intermediates.

Experimental

In the stopped-flow experiment equal amounts of a 0.10 M Ni(en)_3^2 solution (0.10 M in reagent grade $NiCl₂·6H₂O$ and 0.355 M in freshly distilled 'en', which corresponds to 18% excess of the ligand) and of 1 .O M HCl were mixed.

The set-up and the specifications of the rapidscan-stopped-flow spectrophotometer have been described elsewhere [4]. In the stopped-flow experiment a total of 90 spectra were taken in the wavelength range 304-725 nm. The absorbance/time

300 LOO 500 600 700

600
A⁄nm

data at 5 different wavelengths were fitted to function (2), which led to values for a_0 , a_1 , a_2 , a_3 and

$$
A = a_0 + a_1 \exp(-k_1 t) + a_2 \exp(-k_2 t) + a_3 \exp(-k_3 t)
$$

(2)

averaged values for k_1 , k_2 , k_3 by an iteration procedure. On the basis of the averaged rate constants the amplitudes a_i for all wavelengths (*i.e.*, the complete spectra) were calculated. The spectra of all four species involved in reaction (1) were finally calculated on the basis of the amplitudes *ai.*

Results and Discussion

 0.2

O

Absorbance

Figure 1 presents every third spectrum out of a total of 90 spectra taken in a typical stopped-flow experiment. The spectra were taken at three different time bases, Δt (time interval between two consecutive spectra) being 10 ms in the beginning (spectra $1-29$), 200 ms in the middle (spectra 30-59) and 5 s at the end (spectra $60-89$). It is obvious that during the hydrolysis process the spectra are red-shifted, in both the wavelength range 350-400 nm $({}^{3}T_{1}(P) \leftarrow {}^{3}A_{2})$ and 550-650 nm $({}^{3}T_{1}(F) \leftarrow$ ${}^{3}A_{2}$). This red-shift is accompanied by a loss in intensity for both absorption bands.

Computer fitting of the absorbance/time data to eqn. (2) at 5 different wavelengths leads to the rate constants listed in Table I. It follows that the rate of hydrolysis decreases with decreasing numbers of chelate ligands being coordinated, *i.e.*, k_1 : k_2 : k_3 *= 533:30:* 1. The comparison with the rate constants reported in the literature $[1, 3]$ suffers from the fact that the studies were carried out at different temperatures. Using the activation energies pre-

0020-1693/87/\$3.50 **Delet Example 20020-1693/87/\$3.50** C Elsevier Sequoia/Printed in Switzerland

^{*}Author to whom correspondence should be addressed.

$k_1(s^{-1})$	$k_2(s^{-1})$	$k_3(s^{-1})$	k_1/k_2	k_2/k_3	Reference
11.4 ± 1.0	0.645 ± 0.014	0.0214 ± 0.0011	17.7	30.1	this work
11	0.54	0.015	20.6	36.0	1 a
6.8	0.28	0.013	24.3	21.5	3 ^a

TABLE I. Rate Constants for Reaction (1) at 5 "C

aRate constants at 5 °C calculated from those at higher temperature with the activation energies given in ref. 1.

TABLE II. Wavelengths of Maximum Absorption (λ_{max}) and Absorption Coefficients (ϵ_{max}) of the Species Involved in Reaction (1)

Species	${}^{3}T_{1}(P) \leftarrow {}^{3}A_{2}$		${}^{3}T_{1}(F) \leftarrow {}^{3}A_{2}$		Reference
	λ_{\max} (nm)	ϵ_{\max} (nm)	λ_{\max} (nm)	ϵ_{max} (M ⁻¹ cm ⁻¹)	
$Ni(en)_{3}^{2+}$	343.8 ± 1	7.7	542.8 ± 1	6.2	this work
	345 ± 5	7.8	550 ± 5	6.0	3
$Ni(en)_2(H_2O)_2^{2+}$	356.4 ± 1	7.9	570.1 ± 1	5.2	this work
	360 ± 5	7.8	570 ± 5	5.0	3
Ni(en)(H ₂ O) ₄ ²⁺	371.5 ± 1	6.6	620.5 ± 1	4.1	this work
	373 ± 5	6.7	625 ± 5	3.8	3
$Ni(H2O)62+$	388.3 ± 1	5.3	651.8 ± 1	1.9	this work
	390 ± 5	5.1	650 ± 5	1.6	3

Fig. 2. Visible spectra of the species Ni(en)_3^{2+} (1), Ni(en)_2 - $(H_2O)_2^{2+}$ (2), Ni(en)($H_2O)_4^{2+}$ (3) and Ni($H_2O)_6^{2+}$ (4) at 5 °C.

sented by Wilkins et al. [1] for converting all rate constants to 5° C one obtains the data given in Table I. Considering the errors involved (the activation parameters have an error of more than 5%) the agreement is acceptable.

Computer approximation of the absorption coefficients ϵ of all four species involved in reaction (1) leads to the spectra shown in Fig. 2 and to the values of λ_{max} and ϵ_{max} listed in Table II. These values prove indeed the red-shift and the loss in intensity which accompanies the loss of coordinated chelate ligands, *i.e.,* the stepwise transition from the NiN_6 coordination to the NiO_6 coordination. Due to the fact that the resolution of the diode

array spectrophotometer used in this work (0.8 nm/diode) is much better than that of the set-up used by Moore et al. [3] the error in λ_{max} is only +I nm. In addition, the way in which the spectra of the intermediates were calculated (see 'Experimental') excludes any contributions from other species. The agreement between the values for λ_{max} and ϵ_{max} obtained in this work and those obtained from intermediate spectra [3] is nevertheless sufficiently good.

The intermediate $\text{Ni(en)}_2(\text{H}_2\text{O})_2^{2+}$ could possibly exist in the *cis* or *trans* forms. It follows from the experimental evidence presented by Moore *et al.* [3] that the observed spectrum of the species Ni(en)₂(H₂O)₂²⁺ corresponds well with that of known *cis* octahedral species.

Acknowledgements

The authors thank the Deutsche Forschungsgemeinschaft and the Verband der Chemischen Industrie e.V. for support.

References

- 1 A. K. Shamsuddin Ahmed and R. G. Wilkins, J. *Chem. Sot.,* 2901 (1960).
- J. P. Jones and D. W. Margerum, J. *Am. Chem. Sot.. 92, 410* (1970).
- T. J. Kemp, P. Moore and G. R. Quick, *J. Chem. Sot., 1311(1919).*
- 4 K. J. Wannowius, F. Sattler and H. Elias, *GIT-Fachzeitschrift .fiir das Laboratorium, 29,* 1138 (1985).