$[Hg(EPPh_2CHPPh_2)_2]$ (E = S, Se, Te): Organomercury Compounds Without Mercury-Carbon Bonds

MARIA LUSSER and PAUL PERINGER*

Institut für Anorganische und Analytische Chemie der Universität Innsbruck, Innrain 52a, A-6020 Innsbruck, Austria (Received July 14, 1986; revised September 5, 1986)

Abstract

The first transition metal complexes of deprotonated [(diphenylphosphino)methyl] diphenylphosphine chalcogenides are reported. (EPPh₂-CHPPh₂)Li, E = Se, Te, was obtained from (PPh₂)₂-CHLi and elemental E. The title compounds are formed from (EPPh₂CHPPh₂)Li and HgCl₂. The ligands act as P, E-bonded chelates. The new compounds were characterized by ³¹P and ¹⁹⁹Hg NMR spectroscopy.

Introduction

Deprotonated $CH_2(PPh_2)_2$ (1)** has been shown to bind either through the methine carbon and one

phosphorus atom or through two phosphorus atoms when acting as the bidentate ligand [1-5]. Deprotonated CH₂[P(S)Ph₂]₂ (2) has been reported to act as a C, S bonded chelate [6]. Deprotonated CH[P(S)-PPh₂]₃ (3) coordinates as tridentate sulfur ligand in different metal complexes including mercury

[7-10]. Deprotonated EPPh₂CH₂PPh₂ (4) represents thus an ambidentate ligand system with C, P and E as potential donor sites. No metal complexes apart from (EPPh₂CHPPh₂)Li (4, E = S) [4] have been reported. This compound contains lithium attached to phosphorus according to ³¹P and ⁷Li NMR measurements [4]. We report here on mercury compounds of [EPPh₂CHPPh₂], with E = S, Se and Te.

Results and Discussion

 $(SPPh_2CHPPh_2)Li$ is formed from $SPPh_2CH_2PPh_2$ and BuLi in THF [4]. The selenium analogue (4, E = Se) is formed in a corresponding reaction, however selenium transfer from phosphorus to BuLi occurs in a side reaction leading to $CH_2(PPh_2)_2$, $(PPh_2)_2$ -CHLi and BuSe_nLi. (SePPh_2CHPPh_2)Li is however obtained in a clean reaction from $(PPh_2)CHLi$ and elemental selenium. The formation of a P-Se bond instead of a C-Se bond in this reaction is not unexpected since $(PPh_2)_2CHLi$ contains lithium bound to the phosphorus atoms but not to the carbon atom [4, 5]. Selenium thus inserts into a P-Li bond.

Tellurium does not react with $CH_2(PPh_2)_2$ to yield TePPh₂CH₂PPh₂. (TePPh₂CHPPh₂)Li (4, E = Te) is however formed from $(PPh_2)_2CHLi$ and elemental tellurium.

The NMR parameters of the compounds (EPPh₂-CHPPh₂)Li, E = S, Se and Te are listed in Table I.

TABLE I. NMR Parameters of (EPPh₂CHPPh₂)Li^a

E	δ(P) ^b	$\delta(P_E)$	² <i>J</i> (P,P)	<i>T</i> (K)
s ^c	-19.7	42.2	166	300
Se	-15.3	42.2 33.3 ^d	168	193
Te	-14.2	-19.2^{e}	164	213

^aIn ppm to high frequency of 85% H_3PO_4 , coupling constants in Hz, solvent: THF, instrument: Bruker WP-80. ^b $\delta(P)$ of $CH_2(PPh_2)_2$: -22.6. ^cSimilar data have been reported [4] (solvent Et₂O). ^{d 1}J(⁷⁷Se, ³¹P): 610. ^{e J}J(¹²⁵Te, ³¹P): 1476.

© Elsevier Sequoia/Printed in Switzerland

^{*}Author to whom correspondence should be addressed. **In all sketches of structures only the connectivity is shown. There is no attempt to define bond orders. The formulae are drawn without the phenyl substituents.

TABLE II. NMR Parameters of [Hg(EPPh₂CHPPh₂)₂]^a

E	δ(P)	$\delta(\mathbf{P_E})$	$^{1}J(\mathrm{Hg},\mathrm{P})$	J(PCP)	J(PHgP)	δ(Hg)	³ J(Hg,P)
S	19.2	48.1	4456	98	144	2332	65
Se	22.7	38.1	3963	118	115	2351	38
Te	31.5	2.1	2963	147	68	b	с

^aIn ppm to high frequency of 85% H₃PO₄ or aqueous Hg(ClO₄)₂ (2 mmol HgO/ml 60% H₃PO₄), coupling constants in Hz, solvent: THF, 213 K, instrument: Bruker WP-80. ^bInsufficient solubility prevented the collection of ¹⁹⁹Hg NMR data. ^cNot resolved.

The chemical shift of the P(E) phosphorus atom decreases in the row $E = S \rightarrow Te$ as expected [11]. The resonance position of the other phosphorus atom is shifted to a high frequency when going from S to Te. The tellurium phosphorus bond in (TePPh₂-CHPPh₂)Li is kinetically remarkably stable; the AB ³¹P NMR pattern of the compound appears only slightly broadened at ambient temperature.

The reaction of 2 equivalents of $(EPPh_2CHPPh_2)$ -Li, prepared *in situ*, with $HgCl_2$ in THF at -60 °C, gave the title compounds $[Hg(EPPh_2CHPPh_2)^{-}]$ (eqn. (1))

$$Hg Cl_{2} + 2 HC \xrightarrow{P-Li} Hg \left[\begin{array}{c} Ph_{2} \\ P-Li \\ P-E \\ Ph_{2} \end{array} \right] + 2 LiCi \\ P-CH \\ Ph_{2} \end{array} \right] + 2 LiCi \\ 2 (1)$$

The NMR data of the compounds are summarized in Table II. The ligands are thought to coordinate via the phosphorus and the E atoms for the following reasons: the magnitude of the mercury-phosphorus coupling constants clearly demonstrates the presence of one bond couplings. This excludes the existence of a (methine) carbon-mercury bond since diorganomercury compounds are weak electron acceptors unless the organic groups are electronwithdrawing groups. The coordination of E to mercury is infer-red from the position of the ¹⁹⁹Hg resonance. Compounds of the type $[Hg(PR_3)_2]^{2+}$ have chemical shifts in the region of 1200 ppm. The coordination of additional ligands is typically accompanied by a high frequency shift of the mercury-199 resonance [11]. The values of ${}^{1}J(Hg,P)$ and ${}^{2}J(PHgP)$ are very sensitive to E. The variation indicates that the Hg-E interactions progressively weaken and the P-Hg-P bonding angles become more open in the sequence $E = Te \rightarrow S$ [12, 13]. The decrease in ¹J(HgP) for E =

 $S \rightarrow Te$ closely resembles that for the compounds $HgX_2(PR_3)_2$, X = Cl, Br, I [14, 15]. In both series the difference in ${}^{1}J(Hg,P)$ between the compounds involving the two heavier elements (Te-Se or I-Br) is about twice the difference between the compounds involving the two lighter elements (Se-S or Br-Cl). Decomposition occurs as solutions of Hg-(EPPh_2CHPPh_2)_2 are allowed to warm.

References

- 1 R. J. Puddephatt, Chem. Rev., (1983) 99.
- 2 H. Schmidbaur, S. Lauteschläger and G. Müller, J. Organomet. Chem., 281, 33 (1985).
- 3 R. Uson, A. Laguna, M. Laguna, I. Lazaro, A. Morata, P. G. Jones and G. M. Sheldrick, J. Chem. Soc., Dalton Trans., 669 (1986).
- 4 I. J. Colquhoun, H. C. E. McFarlane and W. McFarlane, J. Chem. Soc., Chem. Commun., 220 (1982).
- 5 D. J. Brauer, S. Hietkamp and O. Stelzer, J. Organomet. Chem., 299 (1986) 137.
- 6 J. Browning, G. W. Bushnell, K. R. Dixon and A. Pidcock, *Inorg. Chem.*, 22, 2226 (1983).
- 7 S. O. Grim, P. H. Smith and L. C. Satek, *Polyhedron 1*, 137 (1982).
- 8 S. O. Grim, S. Nittolo, H. L. Ammon, P. H. Smith, I. J. Colquhoun, W. McFarlane and J. R. Holden, *Inorg. Chim. Acta*, 77, L241 (1983).
- 9 S. O. Grim, P. H. Smith, S. Nittolo, H. L. Ammon, L. C. Satek, S. A. Sangokoya, R. K. Khanna, I. J. Colquhoun, W. McFarlane and J. R. Holden, *Inorg. Chem.*, 24, 2889 (1985).
- 10 S. O. Grim, Phosphorus Sulfur, 18, 283 (1983).
- 11 R. K. Harris and B. E. Mann, 'NMR and the Periodic Table', Academic Press, London, 1978.
- 12 N. A. Bell, T. D. Dee, P. L. Goggin, M. Goldstein, R. J. Goodfellow, T. Jones, K. Kessler, D. M. McEwan and I. W. Nowell, J. Chem. Res. (S), 2 (1982).
- 13 H. Buergi, R. W. Kunz and P. S. Pregosin, *Inorg. Chem.*, 19, 3507 (1980).
- 14 R. Colton and D. Dakternieks, Aust. J. Chem., 33, 955 (1980).
- 15 P. S. Pregosin and R. W. Kunz, ³¹P and ¹³C NMR of Transition Metal Phosphine Complexes', Springer, Berlin, 1979.