$[Hg(EPPh₂CHPPh₂)₂]$ (E = S, Se, Te): Organomercury Compounds Without Mercury-Carbon Bonds

MARIA LUSSER and PAUL PERINGER*

Institut fib Anorganische und Analytische Chemie der Universitcit Innsbruck, Innrain 52a, A-6020 Innsbruck, Austria (Received July 14, 1986; revised September 5, 1986)

Abstract

The first transition metal complexes of deprotonated [(diphenylphosphino)methyl] diphenylphosphine chalcogenides are reported. (EPPh₂- $CHPPh₂)Li$, $E = Se$, Te, was obtained from $(PPh₂)₂$. CHLi and elemental E. The title compounds are formed from $(EPPh_2CHPPh_2)Li$ and $HgCl_2$. The ligands act as P, E-bonded chelates. The new compounds were characterized by 31P and 199Hg NMR spectroscopy.

Introduction

Deprotonated $CH_2(PPh_2)_2$ (1)^{**} has been shown to bind either through the methine carbon and one

phosphorus atom or through two phosphorus atoms when acting as the bidentate ligand $[1-5]$. Deprotonated $\text{CH}_2[\text{P}(S)\text{Ph}_2]_2$ (2) has been reported to act as a C, S bonded chelate [6]. Deprotonated CH[P(S)- $PPh₂$]₃ (3) coordinates as tridentate sulfur ligand in different metal complexes including mercury

 $[7-10]$. Deprotonated EPPh₂CH₂PPh₂ (4) represents thus an ambidentate ligand system with C, P and E as potential donor sites. No metal complexes apart from $(EPPh_2CHPPh_2)$ Li $(4, E = S)$ [4] have been reported. This compound contains lithium attached to phosphorus according to ³¹P and ⁷Li NMR measurements [4]. We report here on mercury compounds of $[EPPh₂CHPPh₂]$, with $E = S$, Se and Te.

Results and Discussion

 $(SPPh_2CHPPh_2)$ Li is formed from $SPPh_2CH_2PPh_2$ and BuLi in THF $[4]$. The selenium analogue $(4, E =$ Se) is formed in a corresponding reaction, however selenium transfer from phosphorus to BuLi occurs in a side reaction leading to $CH_2(PPh_2)_2$, $(PPh_2)_2$. CHLi and $Buse_nLi$. (SePPh₂CHPPh₂)Li is however obtained in a clean reaction from $(PPh₂)CHLi$ and elemental selenium. The formation of a P-Se bond instead of a C-Se bond in this reaction is not unexpected since $(PPh₂)₂CHLi$ contains lithium bound to the phosphorus atoms but not to the carbon atom $[4, 5]$. Selenium thus inserts into a P-Li bond.

Tellurium does not react with $CH₂(PPh₂)₂$ to yield $TePPh₂CH₂PPh₂$. (TePPh₂CHPPh₂)Li (4, E = Te) is however formed from $(PPh₂)₂CHLi$ and elemental tellurium.

The NMR parameters of the compounds $(EPPh_2$ - $CHPPh₂)Li$, $E = S$, Se and Te are listed in Table I.

TABLE I. NMR Parameters of (EPPh₂CHPPh₂)Li^a

E	$\delta(P)^{\mathbf{b}}$	$\delta(P_{\rm E})$	$^2J(P,P)$	T(K)
$S^{\mathbf{c}}$	-19.7		166	300
Se	-15.3	42.2 33.3 ^d	168	193
Te	-14.2	$-19.2^{\rm e}$	164	213

 a In ppm to high frequency of 85% H₃PO₄, coupling constants in Hz, solvent: THF, instrument: Bruker WP-80.
 $b_6(P)$ of CH₂(PPh₂)₂: -22.6. ^CSimilar data have been
reported [4] (solvent Et₂O). ^{d 1}J(⁷⁷Se, ³¹P): 610. $^{b}\delta(P)$ of $CH_{2}(PPh_{2})_{2}$: -22.6. eported [4] (solvent $Et₂O$). $d'f'(Se, 3¹P)$: 610. $J(^{123}Te, ^{31}P)$: 1476.

0 Elsevier Sequoia/Printed in Switzerland

^{*}Author to whom correspondence should be addressed. **In all sketches of structures only the connectivity is

shown. There is no attempt to define bond orders. The formulae are drawn without the phenyl substituents.

TABLE II. NMR Parameters of $[Hg(EPPh_2CHPPh_2)_2]^8$

E	$\delta(P)$	$\delta(P_{\rm E})$	$^1J(Hg,\mathbf{P})$	J(PCP)	J(PHgP)	$\delta(Hg)$	3J(Hg,P)
S	19.2	48.1	4456	98	144	2332	65
Se	22.7	38.1	3963	118	115	2351	38
Te	31.5	2.1	2963	147	68	D	с

In ppm to high frequency of 85% H₃PO₄ or aqueous Hg(ClO₄)₂ (2 mmol HgO/ml 60% H₃PO₄), coupling constants in Hz, solent: THF, 213 K, instrument: Bruker WP-80. ^bInsufficient solubility prevented the collection of ¹⁹⁹Hg NMR data. ^cNot resolved.

decreases in the row $E = S \rightarrow Te$ as expected [11]. HgX₂(PR₃)₂, X = Cl, Br, I [14, 15]. In both series The resonance position of the other phosphorus atom the difference in $^1J(Hg,P)$ between the compounds is shifted to a high frequency when going from S to involving the two heavier elements (Te-Se or I-Br) Te. The tellurium phosphorus bond in $(TePPh₂ -$ is about twice the difference between the com- $CHPPh₂$)Li is kinetically remarkably stable; the AB pounds involving the two lighter elements (Se-S or $31P$ NMR pattern of the compound appears only Br-Cl). Decomposition occurs as solutions of Hgslightly broadened at ambient temperature. $(EPPh_2CHPPh_2)$ are allowed to warm.

The reaction of 2 equivalents of $(EPPh_2CHPPh_2)$ -Li, prepared *in situ*, with HgCl₂ in THF at -60° C, gave the title compounds $[Hg(EPPh_2CHPPh_2)_r]$ (eqn. (1))

The NMR data of the compounds are summarized in Table II. The ligands are thought to coordinate via the phosphorus and the E atoms for the following reasons: the magnitude of the mercury-phosphorus coupling constants clearly demonstrates the presence of one bond couplings. This excludes the existence of a (methine) carbon-mercury bond since diorganomercury compounds are weak electron acceptors unless the organic groups are electronwithdrawing roups. The coordination of E to mercury is infered from the position of the ¹⁹⁹Hg resonance. Compounds of the type $[Hg(PR₃)₂]²⁺$ have chemical shifts in the region of 1200 ppm. The coordination of additional ligands is typically accompanied by a high frequency shift of the mercury-199 resonance [11]. The values of $\frac{1}{J}$ (Hg,P) and $\frac{2}{J}$ (PHgP) are very sensitive to E. The variation indicates that the Hg-E interactions progressively weaken and the $P-Hg-P$ bonding angles become more open in the sequence E = Te \rightarrow S [12, 13]. The decrease in ¹*J*(HgP) for E =

The chemical shift of the P(E) phosphorus atom $S \rightarrow Te$ closely resembles that for the compounds

References

- 1 R. J. Puddephatt, *Chem. Rev.,* (1983) 99.
- 2 H. Schmidbaur, S. Lauteschläger and G. Müller, J. *Organomet. Chem., 281, 33 (1985).*
- 3 R. Uson, A. Laguna, M. Laguna, I. Lazaro, A. Morata, P. G. Jones and-G. M. Sheldrick, J, *Chem. koc., Dalton Trans., 669 (1986).*
- *1.* J. Colquhoun, H. C. E. McFarlane and W. McFarlane, J. *Chem. Sot., Chem. Commun., 220 (1982).*
- D. J. Brauer, S. Hietkamp and 0. Stelzer, J. *Organomet. Chem., 299 (1986) 137.*
- J. Browning, G. W. Bushnell, K. R. Dixon and A. Pidcock, *Inorg.* Chem., 22, 2226 (1983).
- S. 0. Grim, P. H. Smith and L. C. Satek, *Polyhedron 1, 137 (1982).*
- *S. 0.* Grim, S. Nittolo, H. L. Ammon, P. H. Smith, I. J. Colquboun, W. McFarlanc and J. R. Holden, *Inorg. Chim. Acta, 77,* L24i (1983).
- 9 S. 0. Grim, P. H. Smith, S. Nittolo, H. L. Ammon, L. C. Satek, S. A. Sangokoya, R. K. Khanna, I. J. Colquhoun, W. McFarlane and J. R. Holden, *Inorg. Chem., 24, 2889 (1985).*
- 10 S. 0. Grim, *Phosphorus Sulfur, 18, 283 (1983).*
- 11 R. K. Harris and B. E. Mann. 'NMR and the Periodic Table', Academic Press, London, 1978.
- 12 N. A. Bell, T. D. Dee, P. L. Goggin, M. Goldstein, R. J. Goodfellow, T. Jones, K. Kessler, D. M. McEwan and 1. W. Nowcll, *J. Chem. Res. (S), 2* (1982).
- 3 H. Buergi, R. W. Kunz and P. S. Pregosin, *Inorg. Chem.*, 19, 3507 (1980).
- 4 R. Colton and D. Dakternieks, Aust. J. Chem., 33, 955 (1980).
- 1s P. S. Pregosin and R. W. Kunz, ^{31}P and ^{13}C NMR of Transition Metal Phosphine Complexes', Springer, Berlin, 1979.