The Reactions of $[WI_2(CO)(NCMe)(\eta^2-RC_2R)_2]$ (R = Me and Ph).

Part 1. The synthesis and spectral properties of the new bisphosphite complexes $[WI_2(CO){P(OR')_3}_2 - (\eta^2 - RC_2R)]$ (R' = Me, Et, ⁱPr and ⁿBu)

PAUL K. BAKER* and ELAINE M. KEYS

Department of Chemistry, University College of North Wales, Bangor, Gwynedd LL57 2UW, U.K.

(Received February 4, 1986)

There is currently considerable interest in alkyne complexes of molybdenum and tungsten. Although a variety of bisphosphine alkyne complexes of the type $[MoX_2(CO)L_2(\eta^2 - PhC_2R)]$ (X = Cl and Br; L = phosphines; R = H or Ph) [1] have been made by reaction of the alkyne with $[MoX_2(CO)_3L_2]$, hitherto only the dibromobistrimethylphosphite analogues [WBr2- $(CO){P(OMe)_3}_2(\eta^2 \cdot RC_2 R')$ (R, R' = Me₂, Et₂, Ph₂ and Me, Ph) have been very recently reported [2], and are prepared by reaction of $[W(\mu-Br)Br(CO)(\eta^2 RC_2R'_{2}_{2}_{2}$ and $P(OMe)_3$. Until now no diiodo complexes of this type have been published which is almost certainly due to the difficulty of synthesising the iodide bridged dimers $[M(\mu-I)I(CO)_4]_2$ (M = Mo and W) [3, 4]. The only other bisphosphite alkyne complexes of molybdenum(II) or tungsten(II) to be reported [5, 6] are the cationic molybdenum complexes $[Mo{P(OMe)_3}_2(\eta^2 - RC_2 R')(\eta^5 - C_5 H_5)][BF_4]$ $(R = R' = Me \text{ or } Ph; R = {}^{t}Bu, R' = H)$. In this communication we wish to report the synthesis of the new diiodo complexes $[WI_2(CO){P(OR')_3}_2(\eta^2 RC_2R$] (R = Me and Ph; R' = Me, Et, ⁱPr and ⁿBu).

Results and Discussion

Two molar equivalents of $P(OR')_3$ (R' = Me, Et, ¹Pr and ⁿBu) react with $[WI_2(CO)(NCMe)(\eta^2)$.

*Author to whom correspondence should be addressed.

 RC_2R_2 (R = Me and Ph) [7] in CH_2Cl_2 to give the complexes $[WI_2(CO){P(OR')_3}_2(\eta^2 \cdot RC_2R)]$ in high yield via displacement of an acetonitrile and an alkyne ligand respectively. The complexes are stable

TABLE II. ¹H NMR Data for the Complexes [WI₂(CO)- $\{P(OR')_3\}_2(\eta^2-RC_2R)\}$

R	R'	¹ H NMR ^a (δ)
Ме	Ме	2.93 (6H, s, MeC≡) 3.49 (9H, d, J _{PH} = 10.8 Hz, OMe) 4.00 (9H, d, J _{PH} = 10.2 Hz, OMe)
Ph	Me	3.49 (9H, d, J_{PH} = 3 Hz, OMe) 3.74 (9H, d, J_{PH} = 5.4 Hz, OMe) 7.40 (10H, m, Ph)
Ме	Et	1.21 (9H, t, $J = 6.6$ Hz, CH_2CH_3) 1.41 (9H, t, $J = 6.6$ Hz, CH_2CH_3) 2.93 (3H, t, $J_{PH} = 1.8$ Hz, $MeC \equiv$) 3.10 (3H, t, $J_{PH} = 1.8$ Hz, $MeC \equiv$) 3.42 (12H, m, CH_2CH_3)
Ph	Et	1.15 (18H, m, CH_2CH_3) 4.00 (12H, m, CH_2CH_3) 7.39 (10H, m, Ph)
Ме	iPr	1.20 (36H, d, J _{PH} = 6.35 Hz, Me) 3.09 (6H, s, MeC≡) 4.73 (6H, m, CH)
Ph	iPr	1.17 (18H, d, J_{PH} = 6.6 Hz, Me) 1.39 (18H, d, J_{PH} = 6.6 Hz, Me) 4.78 (6H, m, C-H) 7.48 (10H, m, Ph)
Me	n _{Bu}	0.90 (18H, m, Me) 1.47 (24H, m, $\underline{CH_2CH_2CH_3}$) 2.92 (3H, t, $J_{PH} = 0.5$ Hz, MeC \equiv) 3.09 (3H, t, $J_{PH} = 0.6$ Hz, MeC \equiv) 3.90 (6H, m, OCH ₂) 4.24 (6H, m, OCH ₂)
Ph	ⁿ Bu	0.87 (18H, m, Me) 1.38 (24H, m, CH ₂ CH ₂ CH ₃) 3.90 (12H, m, OCH ₂) 7.48 (10H, m, Ph)

^aSpectra recorded in CDCl₃ (25 °C) and referenced to SiMe₄.

TABLE I. Analytical (C, H and N) Data and IR Data for $[WI_2(CO) \{P(OR')_3\}_2(\eta^2 - RC_2R)]$

R	R'	Analysis (%) ^a	ν (CO) ^b (cm ⁻¹)	ν (C=C) ^b (cm ⁻¹)
Me	Me	С, 17.50(17.21); Н, 3.25(3.15)	1980(s)	1715(w)
Ph	Me	C, 28.56(28.27); H, 2.84(3.16)	1970(s)	1700(w)
Me	Et	C, 24.16(23.96); H, 4.31(4.26)	1978(s)	1658(w)
Ph	Et	C, 33.84(33.22); H, 4.12(4.13)	1965(s)	1655(w)
Ме	ⁱ Pr	C, 29.21(29.51); H, 5.12(5.17)	1958(s)	1718(w)
Ph	ⁱ Pr	C, 37.79(37.38); H, 4.93(4.94)	1963(s)	1692(w)
Me	ⁿ Bu	C, 34.75(34.14); H, 6.22(5.93)	1978(s)	1658(w)
Ph	ⁿ Bu	C, 41.18(40.93); H, 6.00(5.64)	1963(s)	1720(w)
		_,, ,, , , , , , , , , , , , ,		

^aCalculated values in parenthesis. ^bSpectra recorded in CHCl₃. s, strong; w, weak.

© Elsevier Sequoia/Printed in Switzerland

when stored under argon, and have been fully characterised by elemental analysis (C, H and N), IR spectroscopy (Table I) and ¹H NMR spectroscopy (Table II). The ¹³C NMR spectrum (CDCl₃) of $[WI_2(CO) \{P(O^iPr)_3\}_2(\eta^2 - PhC_2Ph)]$ shows resonances at $\delta(\text{ppm}) = 220.51$ (t, $J_{\text{PC}} = 7.8$ Hz, PhC=), 218.17 (t, $J_{PC} = 14$ Hz, PhC=), 203.56 (s, CO), 139.55 (s, $\equiv C-\underline{C}$, 129.80 (s, \overline{o} -Ph), 129.15 (s, m-Ph), 127.15 (s, p-Ph), 71.34 (s, O-C), 44.69 (s, Me). The very low field acetylenic shifts at 220.51 and 218.17 ppm are indicative that the alkyne ligand is bonded as a '4electron' donor to the tungsten in view of Templeton and Ward's [8] correlation relating the number of electrons donated by the alkyne to a transition-metal and the ¹³C chemical shifts of the 'acetylenic' carbon atoms. Details of the fluxional behaviour of the but-2-yne complexes [WI₂(CO)- $\{P(OR')_3\}_2(\eta^2 - MeC_2Me)\}$ will be presented at a later date.

It is interesting to note that the reaction of $[Wl_2(CO)(NCMe)(\eta^2-MeC_2Me)_2]$ with an equimolar quantity of P(OPh)₃ gives the monotriphenylphosphite product $[Wl_2(CO)\{P(OPh)_3\}(\eta^2-MeC_2Me)_2]$, whereas reaction of equimolar quantities of $[Wl_2(CO)(NCMe)(\eta^2-MeC_2Me)_2]$ and P(OMe)₃ gives

50% $[WI_2(CO)(NCMe)(\eta^2-MeC_2Me)_2]$ and 50% $[WI_2(CO) \{P(OMe)_3\}_2(\eta^2-MeC_2Me)]$. This is likely to be due to the larger 'cone angle' [9] of $P(OPh)_3$.

Acknowledgement

E.M.K. thanks the S.E.R.C. for a studentship.

References

- 1 P. B. Winston, S. J. N. Burgmayer and J. L. Templeton, Organometallics, 2, 167 (1983).
- 2 J. L. Davidson and G. Vasapollo, J. Chem. Soc., Dalton Trans., 2239 (1985).
- 3 R. Colton and C. J. Rix, Aust. J. Chem., 22, 305 (1969).
- 4 R. Colton, Coord. Chem. Rev., 6, 269 (1971).
- 5 M. Bottrill and M. Green, J. Am. Chem. Soc., 99, 5795 (1977).
- 6 S. R. Allen, P. K. Baker, S. G. Barnes, M. Bottrill, M. Green, A. G. Orpen, I. D. Williams and A. J. Welch, J. Chem. Soc., Dalton Trans., 927 (1983).
- 7 P. K. Baker and E. M. Keys, *Organometallics*, submitted for publication.
- 8 J. L. Templeton and B. C. Ward, J. Am. Chem. Soc., 102, 3288 (1980).
- 9 C. A. Tolman, J. Am. Chem. Soc., 92, 2956 (1970).