Mixed Mercury(II)-Tetraphosphine Complexes of the Type $[Hg(tripod)L]^+$ and ²⁺ (tripod = MeC(CH₂-PPh₂)₃, L = Anionic or Neutral Phosphorus Ligand)

PAUL PERINGER* and MARIA LUSSER

Institut für Anorganische und Analytische Chemie der Universität Innsbruck, Innrain 52a, A-6020 Innsbruck, Austria (Received August 2, 1985; revised April 2, 1986)

A series of the new title compounds 1 is formed according to the reactions (1) and (2).

$$[Hg(Me_2SO)_6](O_3SCF_3)_2 + tripod + L \longrightarrow$$
$$[Hg(tripod)L](O_3SCF_3)_2 + 6Me_2SO \quad (1)$$

L = PPh₃, PBu₃, PCy₃ (Cy = cyclohexyl), $CH_2(PPh_2)_2$, P(OEt)₃ and 2,8,9-trioxa-1-phosphatricyclo[3.3.1.1.^{3,7}]-decane (2)

 $[HgLC1] + tripod + TlO_3SCF_3 \longrightarrow$ $[Hg(tripod)L]O_3SCF_3 + TlC1 \qquad (2)$ $L = (\mu -PPh_2)Cr(CO)_5, P(O)(OEt)_2$

The tripod ligand is η^3 -bound in all complexes except for L = PCy₃, for which the temperature dependent equilibrium (3) is observed.

*Author to whom correspondence should be addressed.

TABLE I. NMR Parameters of [Hg(tripod)L]+ or 2+ a

$$[Hg(\eta^{3}\text{-tripod})PCy_{3}](O_{3}SCF_{3})_{2} \rightleftharpoons [Hg(\eta^{2}\text{-tripod})PCy_{3}](O_{3}SCF_{3})_{2} \qquad (3)$$

The complexes were characterized by ³¹P and ¹⁹⁹Hg NMR spectroscopy. The bonding mode of the ligands is established via the multiplicities of the ³¹P and ¹⁹⁹Hg signals. The parameters are reported in Table I. The coupling constants ¹J(¹⁹⁹Hg, ³¹P) involving the tripod ligand are unusually small, whilst those of the η^1 bound phosphorus ligands are unusually large compared with those of other mercury compounds coordinated by 4 phosphorus ligands [1-4]. This was also observed for the d^{10} platinum(0) complexes [5,6] and was attributed to diminished s character of the tripod-metal bonds as a consequence of the fixed coordination geometry of the tripod ligand differing from the ideal tetrahedral geometry. The metal-P bond involving the η^1 phosphorus ligand will be hybridized correspondingly to include more s character [5, 6]. The coupling constants ¹J(¹⁹⁹Hg, ³¹P) for the

The coupling constants ${}^{1}J({}^{199}\text{Hg}, {}^{31}\text{P})$ for the tripod ligand in the compounds $[\text{Hg}(\eta^3 \text{-tripod})\text{L}]\text{O}_3$ -SCF₃ are especially small, as has been observed for other phosphine addition compounds of mercury complexes involving anionic phosphorus ligands (e.g. 143 Hz for $[\text{Hg}\{\text{P}(\text{O})(\text{OEt})_2\}_2(\text{PPh}_3)_2]$ [7]). The coupling ${}^{1}J({}^{199}\text{Hg},{}^{31}\text{P})$ for the tripod ligand in the complex $[\text{Hg}(\eta^3 \text{-tripod})(\mu \text{-PPh}_2)\text{Cr}(\text{CO})_5]\text{O}_3\text{SCF}_3$ represents the smallest mercury—phosphorus one-bond coupling reported to date (125 Hz).

According to preliminary results, analogous complexes are formed with silver(I) [8].

Acknowledgement

We thank the Fonds zur Förderung der Wissenschaft, Vienna, for making available the NMR spectometer.

P	δ(³¹ P) ^b	¹ <i>J</i> (¹⁹⁹ Hg, ³¹ P) ^b	δ(³¹ P) ^c	¹ J(¹⁹⁹ Hg, ³¹ P) ^c	² <i>J</i> (³¹ P, ³¹ P)	δ(¹⁹⁹ Hg)	<i>T</i> (K)
PPh ₃	29.1q	4516	 3.8d	1278	53	2038	
CH ₂ (PPh ₂) ₂ ^d	27.2q	4811	2.1d	1242	55		233
PBu ₃	22.3q	4476	1.6d	1076	48		193
PCy3 ^e	60.8q	4357	0.7d	997	48		233
PCy3 ^f	68.3t	4468	27.9d	1698	9 0		233
P(OEt) ₃	101.9q	8187	-0.4d	1568	87		253
2	123.2q	7348	1.0d	1632	79		213
$P(O)(OEt)_2$	69.3q	10520	-5.6d	512	105	1899	
(u-PPh2)Cr(CO)5	28.6q	3085	3.4d	125	36		

^aSolvent CH₂Cl₂, T = 300 K unless otherwise stated, chemical shifts in ppm to high frequency of 85% H₃PO₄ or aqueous Hg-(ClO₄)₂ solution (2 mmol HgO/ml 60% HClO₄), coupling constants in Hz. ^bL. ^cTripod. ^d[Hg(η^3 -tripod)(η^1 -CH₂-(PPh₂)₂)]²⁺, $\delta(^{31}P_{free})$: -24.9, $J(PPh_2CH_2PPh_2)$: 159 Hz. ^e[Hg(η^3 -tripod)(PCy₃)]²⁺. ^f[Hg(η^2 -tripod)(PCy₃)]²⁺.

References

- 1 R. Colton and D. Dakternieks, Aust. J. Chem., 34, 323 (1981).
- P. Peringer and M. Lusser, *Inorg. Chem.*, 24, 109 (1985).
 P. P. Winkler and P. Peringer, *Inorg. Chim. Acta*, 76, 259 (1983).
- 4 D. Obendorf and P. Peringer, Inorg. Chim. Acta, 77, 247 (1983).
- 5 J. Chatt, R. Mason and D. W. Meek, J. Am. Chem. Soc., 97, 3826 (1975).
- 6 A. R. Al-Ohaly and J. F. Nixon, Inorg. Chim. Acta, 47, 105 (1980).
- 7 J. Eichbichler and P. Peringer, Inorg. Nucl. Chem. Lett., 17, 305 (1981).
- 8 D. Obendorf and P. Peringer, unpublished results.