Monomeric $1,4,2,3,5\lambda^2$ -Diazadisilastannolidines and -Plumbolidines

KLAUS HORCHLER, CARIN STADER and BERND WRACKMEYER*

Institut für Anorganische Chemie der Universität München, Meiserstrasse 1, D-8000 Munich 2, F.R.G.

(Received February 22, 1986)

Like many other metal amides [1], tin(II) and lead(II) amides are monomeric in solution and thermally stable if *N*-trimethylsilyl-groups are present [2]. In contrast with non-cyclic derivatives, there are only a few cyclic tin(II) or lead(II) amides which have been characterized unambiguously as monomeric in solution [3]. The crystal structure of compound 1 shows that it can also exist as a monomer in the solid state [4], and it is regarded as a monomer in solution. Considering the rich chemistry of 1 [3a, 5], other cyclic Sn(II)— or Pb(II)—amides are of interest.

(R = t-Bu, monomeric in solution [3b]) (R = i-Pr, dimeric in solution [3b])

To our knowledge the ligand $-(R)N-SiMe_2-SiMe_2-N(R)-$ has not been used for stabilizing carbene analogues or similarly unstable species, although various other heterocyclic compounds are known [6]. The ring strain in 1,4,2,3,5 λ^2 -diaza-disilastannolidines, 2, or -plumbolidines, 3, would be reduced with respect to 1, and organyl groups other than t-Bu might be tolerated without changing the solution structure. In this letter, we report the synthesis of the compounds 2 and 3, according to eqn. 1.

R Me ₂ Si-N-Li Me ₂ Si-N-Li R			MCl2	Et2O,hexane -2 LiCl			Me ₂ Si M Me ₂ Si M Me ₂ Si N R	(1)
R	i-Pr	s-Bu	t-Bu		t-Oct	:	_	
M	Sn	Sn	Sn	РЪ	Sn	РЪ		
	2a	2 b	2c	3c	2d	3d		

^{*}Author to whom correspondence should be addressed.

The compounds 2d, 3d are oily red liquids, 2c, 3c are orange crystalline solids, 2b is an orange liquid and 2a is a pale yellow solid. They are thermochromic, becoming redder on heating, like other Sn(II) or Pb(II)-amides [2, 3]. Purification by distillation $(2a-c) (10^{-2}-10^{-3} \text{ torr})$ leads to some decomposition, in particular for 2d and for the lead compounds 3c, d. The compounds 2 and 3 are extremely sensitive towards oxygen and moisture; they decompose slowly on standing in daylight and the lead amides react vigorously with CH₂Cl₂. For many purposes the compounds 2 and 3 are sufficiently pure when the reaction solution (eqn. (1)) is filtrated and the solvent is removed.

The monomeric structure of the compounds 2 and 3 can be established by ¹¹⁹Sn and ²⁰⁷Pb NMR spectroscopy [7]. Relevant NMR data are given in Table I. The criterion of ¹¹⁹Sn- and ²⁰⁷Pb-chemical shifts becomes readily apparent, by comparison with δ ¹¹⁹Sn of 2 (R = Et) which is dimeric (δ ¹¹⁹Sn = +208(28 °C), +253(80 °C)) and with δ ²⁰⁷Pb of a dimeric lead(II) amide 4.

 δ^{207} Pb = +403(28 °C)

A detailed discussion of the spectroscopic data (NMR, UPS) of 1, 2 and noncyclic Sn(II)- and Pb(II)-amides together with molecular orbital calculations will be presented elsewhere.

Experimental

All compounds were handled in a dry N_2 atmosphere. The synthesis of the 1,2-bis(alkylamino)-1,1,2,2-tetramethyldisilanes and the dilithiation has been performed according to the literature [8].

1, 4-Dialkyl-2, 2, 3, 3-tetramethyl-1, 4, 2, 3, $5\lambda^2$ -stannolidines and -plumbolidines

A freshly prepared suspension of the dilithiated bis(amino)disilane (eqn. (1)) (8 mmol) in 50 ml of ether/hexane (1:1) is cooled to -78 °C. After adding SnCl₂ (1.5 g, 8 mmol) or PbCl₂ (2.22 g, 8 mmol) and warming to room temperature, stirring is continued for 2 h. Hexane and ether are removed *in vacuo*; 20 ml of hexane are added again, and evaporation (*in vacuo*) of the filtrated clear solution leaves the compounds 2 and 3 in >90% yield. Fractional distillation gives pure 2a (boiling point (b.p.) 71 °C/10⁻² torr), 2b (b.p. 76 °C/10⁻³ torr). 2c (b.p. 70 °C/10⁻² torr), 3c (b.p. 89 °C/10⁻³ torr).

© Elsevier Sequoia/Printed in Switzerland

R Me ₂ Si M Me ₂ Si R			δ ¹³ C (SiMe)	δ ¹³ C (R)			δ ²⁹ Si	δ Mb (¹¹⁹ Sn, ²⁰⁷ Pb)
	М	R						
2a	Sn	i-Pr	2.1 (45.0) [9.0]	49.9(CH) [42.3]	32.4(CH ₃) [39.9]		2.6 [n.o.]	+708 ^c
2Ъ	Sn	s-Bud	2.1 (47.3)	56.1(CH) [35.4] 30.6(CH ₃) [35.4]	38.0(CH ₂) [39.4] 12.2(CH ₃)		-2.5 [26.3]	+705
2c	Sn	t-Bu	5.4 (44.6) [8.2]	57.7(C) [22.4] ^e	38.5(CH ₃) [43.7]		-4.4 [21.2]	+760
3c	Pb	t-Bu	9.3 (43.5)	57.5(C) [22.4] ^e	40.1(CH ₃) [31.0] ^e		+7.3 [27.1] ^e	+ 4900
2d	Sn	t-Oct ^f	6.6 (44.6) [8.2]	62.2(C) [20.0] 33.0(C)	64.3(CH ₂) [46.5] 32.8(CH ₃)	37.7(CH ₃) [20.1]	-5.9 [19.4]	+785
3d	Pb	t-Oct ^f	9.6 (43.7)	61.8(C) [15] ^e 32.8(C)	64.6(CH ₂) [47.4] ^e 32.8(CH ₃)	40.1(CH ₃) [25.5] ^e	+4.3 [n.o.] ^e	+ 4930

TABLE I. ¹³C, ²⁹Si, ¹¹⁹Sn and ²⁰⁷Pb NMR Data^a of 1,4,2,3,5²-Diazadisilastannolidines (2) and -Plumbolidines

^aBruker WP 200-FT NMR spectrometer in C₆D₆, 27–28 °C, *ca.* 10% w/v; δ ¹³C(C₆D₆) = 128.0 relative to Me₄Si; δ ²⁹Si, δ ¹¹⁹Sn and δ ²⁰⁷Pb relative to external Me₄Si, Me₄Sn and Me₄Pb, respectively. Coupling constants ¹J(²⁹Si¹³C) in parentheses and J(M¹³C), J(M²⁹Si) (M = ¹¹⁹Sn, ²⁰⁷Pb) in square brackets. ^bBroad resonances, owing mainly to partially relaxed scalar coupling ¹J(M¹⁴N); $\Delta v 1/2$ (¹¹⁹Sn) *ca.* 400–500 Hz and $\Delta v 1/2$ (²⁰⁷Pb) *ca.* 800–1000 Hz. ^cMeasured in C₇D₈ at +105 °C; ¹J(¹¹⁹Sn¹⁴N) = 190 ± 10 Hz. ^dSeparate resonances for the two diastereomers (SS- and RS-configurations) are not resolved. ^eThe ²⁰⁷Pb satellites are broadened; this is presumably the result of chemical shift anisotropy (CSA) relaxation of the ²⁰⁷Pb nucleus. ^ft-Oct = C(CH₃)₂-CH₂--C(CH₃)₃.

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft and by the Fonds der Chemischen Industrie. We are grateful to Wacker-Chemie for a generous gift of 1,2-dichloro-tetramethyldisilane.

References

(a) M. F. Lappert, P. P. Power, A. R. Sanger and R. C. Srivastava, 'Metal and Metalloid Amides', Ellis Horwood, Chichester, 1980; (b) H. Bürger, W. Sawodny and U. Wannagat, J. Organomet. Chem., 3, 113 (1965); (c) D. C. Bradley, M. B. Hursthouse and P. F. Rodesiler, J. Chem. Soc., Chem. Commun., 14 (1969); (d) S. J. Simpson, H. W. Turner and R. A. Andersen, Inorg. Chem., 20, 2991 (1981).

- 2 (a) D. H. Harris and M. F. Lappert, J. Chem. Soc., Chem. Commun., 895 (1974); (b) M. J. S. Gynane, D. H. Harris, M. F. Lappert, P. P. Power, P. Rivière and M. Rivière-Baudet, J. Chem. Soc., Dalton Trans., 2004 (1977).
- 3 (a) M. Veith and O. Recktenwald, Top. Curr. Chem., 104, 3 (1982); (b) M. Veith, Z. Naturforsch., Teil B, 33, 1 (1978); (c) D. Hänssgen, J. Kuna and B. Ross, Chem. Ber., 109, 1797 (1976); (d) C. D. Schaeffer, Jr. and J. J. Zuckerman, J. Am. Chem. Soc., 96, 7160 (1974); (e) P. J. Corvan and J. J. Zuckerman, Inorg. Chim. Acta, 34, L255 (1979).
- 4 M. Veith, Z. Naturforsch., Teil B, 33, 7 (1978).
- 5 M. Veith, Comments Inorg. Chem., 4, 179 (1985).
- 6 (a) U. Wannagat and T. Blumenthal, Monatsch. Chem., 116, 557 (1985), and references cited therein; (b) I. Geisler and H. Nöth, J. Chem. Soc., Chem. Commun., 775 (1969).
- 7 B. Wrackmeyer, J. Magn. Reson., 61, 536 (1985).
- 8 (a) U. Wannagat, H. Autzen and M. Schlingmann, Z. Anorg. Allg. Chem., 419, 41 (1976); (b) U. Wannagat, G. Eisele and M. Schlingmann, Z. Anorg. Allg. Chem., 429, 83 (1977).