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Like many other metal amides [l], tin(I1) and 
lead(I1) amides are monomeric in solution and ther- 
mally stable if N-trimethylsilyl-groups are present 
[2]. In contrast with non-cyclic derivatives, there 
are only a few cyclic tin(I1) or lead(I1) amides which 
have been characterized unambiguously as mono- 
meric in solution [3]. The crystal structure of com- 
pound 1 shows that it can also exist as a monomer 
in the solid state [4], and it is regarded as a monomer 
in solution. Considering the rich chemistry of 1 
[3a, 51, other cyclic Sn(II)- or Pb(II)-amides are 
of interest. 

The compounds 2d, 3d are oily red liquids, 2c, 3c 
are orange crystalline solids, 2b is an orange liquid 
and 2.a is a pale yellow solid. They are thermochrom- 
ic, becoming redder on heating, like other Sn(I1) 
or Pb(II)-amides [2,3]. Purification by distillation 
(2a-c) ( 10-2-10-3 torr) leads to some decomposi- 
tion, in particular for 2d and for the lead compounds 
3c, d. The compounds 2 and 3 are extremely sensitive 
towards oxygen and moisture; they decompose 
slowly on standing in daylight and the lead amides 
react vigorously with CH2C12. For many purposes 
the compounds 2 and 3 are sufficiently pure when 
the reaction solution (eqn. (1)) is filtrated and the 
solvent is removed. 

(R = t-Bu, monomeric in solution [3b]) 
(R = i-Pr, dimeric in solution [ 3b]) 

To our knowledge the ligand -(R)N-SiMe2-- 
SiMe2-N(R)- has not been used for stabilizing 
carbene analogues or similarly unstable species, 
although various other heterocyclic compounds are 
known [6]. The ring strain in 1,4,2,3,5h’-diaza- 
disilastannolidines, 2, or -plumbolidines, 3, would 
be reduced with respect to 1, and organyl groups 
other than t-Bu might be tolerated without changing 
the solution structure. In this letter, we report the 
synthesis of the compounds 2 and 3, according to 
eqn. 1. 
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The monomeric structure of the compounds 2 
and 3 can be established by “‘Sn and “‘Pb NMR 
spectroscopy [7]. Relevant NMR data are given in 
Table I. The criterion of ‘19Sn- and 207Pb-chemical 
shifts becomes readily apparent, by comparison 
with 6 l19Sn of 2 (R = Et) which is dimeric (6 l19Sn = 
+208(28 “C), +253(80 “C)) and with 6 “‘Pb of a 
dimeric lead(I1) amide 4. 
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6 207Pb = +403(28 “C) 

A detailed discussion of the spectroscopic data 
(NMR, UPS) of 1, 2 and noncyclic Sn(II)- and 
Pb(II)-amides together with molecular orbital 
calculations will be presented elsewhere. 

Experimental 

All compounds were handled in a dry N2 atmo- 
sphere. The synthesis of the 1,2-bis(alkylamino) 
1,1,2,2-tetramethyldisilanes and the dilithiation has 
been performed according to the literature [8]. 

I, 4-Dialkyl-2,2,3,3-tetramethyl-I, 4,2,3, 5X2-stanno- 
lidines and -plumbolidines 

A freshly prepared suspension of the dilithiated 
bis(amino)disilane (eqn. (1)) (8 mmol) in 50 ml of 
ether/hexane (1: 1) is cooled to -78 “C. After adding 
SnC12 (1.5 g, 8 mmol) or PbC12 (2.22 g, 8 mmol) 
and warming to room temperature, stirring is con- 
tinued for 2 h. Hexane and ether are removed in 
vacua; 20 ml of hexane are added again, and evap- 
oration (in vacua) of the filtrated clear solution 
leaves the compounds 2 and 3 in >90% yield. Frac- 
tional distillation gives pure 2a (boiling point (b.p.) 
71 oC/1O-2 torr), 2b (b.p. 76 oC/lO-2 torr), 2~ 
(b.p. 70 oC/1O-2 torr), 3c (b.p. 89 oC/1O-3 torr). 
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TABLE I. 13C, “Si, llgSn and “‘Pb NMR Dataa of 1 4 2 3 5h2-Diazadisilastannolidines (2) and Plumbolidines , 1 , I 

r! 
M+’ \ 

I M Me,S4 , 6 1% 6 1% 
‘N 

6 2gSi 6 Mb 

R (SiMe) (R) (l19Sn, 207Pb) 

M R 

2a Sn iPr 2.1 49.9(CH) 32.4(CH3) -2.6 +70gc 
(45 .O) 142.31 [39.9] [n.o.] 

19.01 

2b Sn 

2c Sn 

s-Bud 2.1 56.1(CH) 38.0(CHz) -2.5 +705 
(47.3) [35.4] [39.4] [26.3] 

30.6(CH3) 12.2(CH3) 
[35.43 

t-Bu 5.4 57.7(C) 38.5(CH3) -4.4 +760 
(44.6) [22.4Je 143.71 [21.2] 

i8.21 

3c Pb t-Bu 9.3 57.5(C) 40.1(CH3) +7.3 +4900 
(43.5) [22.4]= [31.01e [27.11e 

2d Sn t-octf 6.6 62.2(C) 64.3(CH2) 37.7(CH3) -5.9 +785 
(44.6) [20.0] [46.5] [20.1] [19.4] 

t8.21 33.0(C) 32.8(CH3) 

3d Pb t-Octf 9.6 61.8(C) 64.6(CH2) 40.1(CH3) +4.3 +4930 
(43.7) [Isle [47.4]e [25.51e [n.o.] e 

32.8(C) 32.8(CH3) 

aBruker WP 200-FT NMR spectrometer in C6D6, 27-28 “C, ca. 10% w/v; 6 “C(C6D6) = 128.0 relative to Me,Si; S 29Si, 6 l19Sn 
and S 207Pb relative to external Me&i, MeaSn and MeaPb, respectively. Coupling constants 1J(29Si13C) in parentheses and 
J(M13C), J(M29Si) (M = l19Sn, 207Pb) in square brackets. bBroad resonances, owing mainly to partially relaxed scalar coupling 
‘J(M14N); Av1/2 (“‘Sn) ca. 400-500 Hz and Av1/2 (207Pb) ca. 800-1000 Hz. ‘Measured in C7Ds at + 105 “C; ‘J(119Sn’4N) 
= 190 f 10 Hz. dSeparate resonances for the two diastereomers (SS- and RSconfiiurations) are not resolved. eThe 207Pb 
satellites are broadened; this is presumably the result of chemical shift anisotropy (CSA) relaxation of the 207Pb nucleus. 
ft-Oct = C(CH3)2-CH2-C(CH3)3. 
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