Monomeric 1,4,2,3,5 λ^2 **-Diazadisilastannolidines and -Plumbolidines**

KLAUS HORCHLER, CARIN STADER and BERND WRACKMEYER*

Institut fir Anorganische Chemie der Universitit Miinchen, Meiserstrasse 1, D-8000 Munich 2, F.R. G.

(Received February 22, 1986)

Like many other metal amides [1], tin(II) and lead(I1) amides are monomeric in solution and thermally stable if N-trimethylsilyl-groups are present [2]. In contrast with non-cyclic derivatives, there are only a few cyclic tin(I1) or lead(I1) amides which have been characterized unambiguously as monomeric in solution [3]. The crystal structure of compound **1** shows that it can also exist as a monomer in the solid state [4], and it is regarded as a monomer in solution. Considering the rich chemistry of **1** [3a, 5], other cyclic Sn(II)- or Pb(II)-amides are of interest.

$$
\begin{matrix} & & R \\ & \searrow & \\ \searrow & & \searrow \\ & \searrow & & \\ & R & & \\ 1 & & & \end{matrix}
$$

 $(R = t-Bu, monotone(c in solution [3b])$ $(R = i-Pr,$ dimeric in solution [3b])

To our knowledge the ligand $-(R)N-SiMe₂$. $SiMe₂-N(R)$ - has not been used for stabilizing carbene analogues or similarly unstable species, although various other heterocyclic compounds are known [6]. The ring strain in $1,4,2,3,5\lambda^2$ -diazadisilastannolidines, 2, or -plumbolidines, 3, would be reduced with respect to **1,** and organyl groups other than t-Bu might be tolerated without changing the solution structure. In this letter, we report the synthesis of the compounds 2 and 3, according to eqn. 1.

$Me2Si-N-Li\nMe2Si-N-Li + MCl2\nhe2Si-N-Li + MCl2$				Et ₂ 0,hexane -2 LiCl			Me ₂ Si M Me ₂ Si M	(1)
	R i- Pr	s-Bu	t-Bu		t-Oct			
	M Sn	Sn	Sn	PЬ	Sn	PЬ		
	2a	2 _b	2c	3c	2d	3d		

^{*}Author to whom correspondence should be addressed.

The compounds **2d, 3d** are oily red liquids, 2c, 3c are orange crystalline solids, 2b is an orange liquid and 2a is a pale yellow solid. They are thermochromic, becoming redder on heating, like other Sn(I1) or $Pb(II)$ -amides [2, 3]. Purification by distillatio $(2a-c)$ $(10^{-2}-10^{-3}$ torr) leads to some decompos tion, in particular for **2d** and for the lead compounds 3c, **d.** The compounds 2 and 3 are extremely sensitive towards oxygen and moisture; they decompose slowly on standing in daylight and the lead amides react vigorously with $CH₂Cl₂$. For many purposes the compounds 2 and 3 are sufficiently pure when the reaction solution (eqn. (1)) is filtrated and the solvent is removed.

The monomeric structure of the compounds 2 and 3 can be established by 119 Sn and 207 Pb NMR spectroscopy [7]. Relevant NMR data are given in Table I. The criterion of '19Sn- and 207Pb-chemical shifts becomes readily apparent, by comparison with δ ¹¹⁹Sn of 2 (R = Et) which is dimeric (δ ¹¹⁹Sn = +208(28 °C), +253(80 °C)) and with δ ²⁰⁷Pb of a dimeric lead(I1) amide 4.

$$
\begin{bmatrix} M e_3 Si \\ N^2 B \\ N e_3 Si \\ 4 \end{bmatrix}_2
$$

 $6^{207}Pb = +403(28 °C)$

A detailed discussion of the spectroscopic data (NMR, UPS) of **1,** 2 and noncyclic Sn(II)- and Pb(II)-amides together with molecular orbital calculations will be presented elsewhere.

Experimental

All compounds were handled in a dry N_2 atmo**sphere.** The synthesis of the 1,2-bis(alkylamino) 1,1,2,2-tetramethyldisilanes and the dilithiation has been performed according to the literature [8].

I, *4-Dialkyl-2,2,3,3-tetramethyl-I, 4,2,3, 5X2-stannolidines and -plumbolidines*

A freshly prepared suspension of the dilithiated bis(amino)disilane (eqn. (1)) (8 mmol) in 50 ml of ether/hexane $(1:1)$ is cooled to -78 °C. After adding $SnCl₂$ (1.5 g, 8 mmol) or $PbCl₂$ (2.22 g, 8 mmol) and warming to room temperature, stirring is continued for 2 h. Hexane and ether are removed *in vacua;* 20 ml of hexane are added again, and evaporation *(in vacua)* of the filtrated clear solution leaves the compounds 2 and 3 in $>90\%$ yield. Fractional distillation gives pure **2a** (boiling point (b.p.) $71 \text{ °C}/10^{-2}$ torr), **2b** (b.p. 76 °C/10⁻² torr), **2c** $(b.p. 70 °C/10^{-2}$ torr), 3c (b.p. 89 °C/10⁻³ torr).

0020-1693/86/\$3.50 0 Elsevier Sequoia/Printed in Switzerland

$Me2$ Si			δ ¹³ C (SiMe)	δ ¹³ C (R)			δ^{29} Si	δ Mb $(^{119}Sn,~^{207}Pb)$
	M	\overline{R}						
2a	Sn	i-Pr	2.1 (45.0) [9.0]	49.9(CH) [42.3]	32.4 (CH ₃) [39.9]		-2.6 [n.o.]	$+708$ ^c
2 _b	Sn	s-Bu ^d	2.1 (47.3)	56.1(CH) [35.4] 30.6 (CH ₃) [35.4]	38.0 (CH ₂) [39.4] 12.2 (CH ₃)		-2.5 [26.3]	$+705$
2c	Sn	t-Bu	5.4 (44.6) $[8.2]$	57.7(C) $[22.4]$ ^e	38.5 (CH ₃) [43.7]		-4.4 [21.2]	$+760$
3c	Pb	t-Bu	9.3 (43.5)	57.5(C) $[22.4]$ ^e	40.1 (CH ₃) $[31.0]$ ^e		$+7.3$ $[27.1]$ ^e	$+4900$
2d	Sn	t -Oct f	6.6 (44.6) [8.2]	62.2(C) [20.0] 33.0(C)	64.3 (CH ₂) [46.5] 32.8 (CH ₃)	37.7 (CH ₃) [20.1]	-5.9 [19.4]	$+785$
3d	${\bf Pb}$	t -Oct f	9.6 (43.7)	61.8(C) $[15]$ ^e 32.8(C)	64.6 (CH ₂) $[47.4]$ ^e 32.8 (CH ₃)	40.1 (CH ₃) $[25.5]$ ^e	$+4.3$ $[n.o.]$ ^e	$+4930$

TABLE I. ¹³C, ²⁹Si, ¹¹⁹Sn and ²⁰⁷Pb NMR Data^a of 1,4,2,3,5 λ^2 -Diazadisilastannolidines (2) and -Plumbolidines

^aBruker WP 200-FT NMR spectrometer in C₆D₆, 27–28 °C, ca. 10% w/v; δ ¹³C(C₆D₆) = 128.0 relative to Me₄Si; δ ²⁹Si, δ ¹¹⁹Sn and δ^{207} Pb relative to external Me₄Si, Me₄Sn and Me₄Pb, respectively. Coupling constants ¹J(²⁹Si¹³C) in parentheses and $J(M^{13}C)$, $J(M^{29}Si)$ (M = ^{119}Sn , ^{207}Pb) in square brackets. b_{Broad} resonances, owing mainly to partially relaxed scalar coupling $\frac{1}{2}$ (M¹⁴N); $\Delta \nu$ 1/2 (¹¹⁹Sn) ca. 400–500 Hz and $\Delta \nu$ 1/2 (²⁰⁷Pb) ca. 800–1000 Hz. CMeasured in C₇D₈ at +105 °C; ¹J(¹¹⁹Sn¹⁴N) $2(M^2 \text{ N})$; $\Delta \nu_1 / 2$ (1.1.3) ca. 400–300 Fiz and $\Delta \nu_1 / 2$ (1.1.1.6) ca. 800–1000 Fig. 31.4.8. The measured in σ_1 / σ_0 at 1.2.5 and σ_2 / σ_1 deparate resonances for the two diastereomers (SS- and RS-configura e The $207Pb$ satellites are broadened; this is presumably the result of chemical shift anisotropy (CSA) relaxation of the ²⁰⁷Pb nucleus. f_{t-1} -Oct = C(CH₃)₂-CH₂-C(CH₃)₃.

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft and by the Fonds der Chemischen Industrie. We are grateful to Wacker-Chemie for a generous gift of 1,2-dichloro-tetramethyldisilane.

References

1 (a) M. F. Lappert, P. P. Power, A. R. Sanger and R. C. Srivastava, 'Metal and Metalloid Amides', Ellis Horwood, Chichester, 1980; (b) H. Bürger, W. Sawodny and U. Wannagat, J. Organomet. Chem., 3, 113 (1965); (c) D. C. Bradley, M. B. Hursthouse and P. F. Rodesiler, J. Chem. Soc., Chem. Commun., 14 (1969); (d) S. J. Simpson, H. W. Turner and R. A. Andersen, Inorg. Chem., 20, 2991 (1981).

- 2 (a) D. H. Harris and M. F. Lappert, J. Chem. Soc., Chem. Commun., 895 (1974); (b) M. J. S. Gynane, D. H. Harris, M. F. Lappert, P. P. Power, P. Rivière and M. Rivière-Baudet, J. Chem. Soc., Dalton Trans., 2004 (1977).
- 3 (a) M. Veith and O. Recktenwald, Top. Curr. Chem., 104, 3 (1982); (b) M. Veith, Z. Naturforsch., Teil B, 33, 1 (1978); (c) D. Hänssgen, J. Kuna and B. Ross, Chem. Ber., 109, 1797 (1976); (d) C. D. Schaeffer, Jr. and J. J. Zuckerman, J. Am. Chem. Soc., 96, 7160 (1974); (e) P. J. Corvan and J. J. Zuckerman, *Inorg. Chim. Acta*, 34, L255 (1979).
- 4 M. Veith, Z. Naturforsch., Teil B, 33, 7 (1978).
- 5 M. Veith, Comments Inorg. Chem., 4, 179 (1985).
- 6 (a) U. Wannagat and T. Blumenthal, Monatsch. Chem., 116 , 557 (1985), and references cited therein; (b) I. Geisler and H. Nöth, J. Chem. Soc., Chem. Commun., 775 (1969).
- 7 B. Wrackmeyer, J. Magn. Reson., 61, 536 (1985).
- 8 (a) U. Wannagat, H. Autzen and M. Schlingmann, Z. Anorg. Allg. Chem., 419, 41 (1976); (b) U. Wannagat, G. Eisele and M. Schlingmann, Z. Anorg. Allg. Chem., 429, 83 (1977).