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Abstract 

The monovalent nickel complex formed by the 
reduction of the /I-isomer of the complex of C-5,12- 
racemic-1,4,5,7,7,8,11,12,14,14-decamethyl-1,4,8,1 l- 
tetraazacyclotetradecane nickel(H), NiLr’+ in 0.1 M 
HCO,Na, pH 7.6, has a half-life longer than 90 h. 
The redox potential of the couple NiLr’/NiLr’+ 
is -0.94 V us. Ag/AgCl. The absorption spectrum 
of NiLr’ consists of a band with h,, = 335 nm and 
hax = 2200 M-’ cm-‘. For the analogous complex 
with C-5,12-racemic-5,7,7,12,14,14-hexamethyl-1,4, 
8,11-tetraazacyclotetradecane, L2, the half-life time 
of NiL2+ is less than 1 min and the redox potential 
is -1.44 V vs. Ag/AgCl. These results are similar to 
those reported earlier for the analogous nickel com- 
plexes with the meso-isomers of the ligands. The 
results thus indicate that both the kinetic and 
thermodynamic stabilization of monovalent nickel 
by N-methylation of tetraazamacrocyclic ligands is 
not significantly affected by the configuration of 
the ligand. 

Introduction 

In a recent study [l] we have shown that the N- 
methylation of the divalent nickel complexes in the 
trans III configuration [2] (see Scheme l), with 1,4, 
8,11-tetraazacyclotetradecane, Lq, and 5,7,7,12,14, 
14-hexamethyl-1,4,8,11-tetraazacyclotetradecane, Lg, 
facilitates the reduction of the central nickel cation 
and kinetically stabilizes the monovalent. nickel com- 
plex in aqueous solutions [ 11. The increase of the 
redox potential upon N-methylation was attributed 
to a slight increase in the cavity size of the ligand and 
to the more hydrophobic nature of the N-methylated 
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Scheme 1. 

complex [ 1, 31. The kinetic stabilization of the 
monovalent nickel complexes by the N-methylation 
was attributed to the hindering, or slowing down, of 
the ligand loss reaction by N-methylation [l]. It 

NiL’ + 2HsO’- Ni& + LH22+ 

seemed of interest to check whether the configura- 
tion of the ligand has a major role on these effects. 

The divalent nickel complex with C-5,12racemic- 
5,7,7,12,14,14-hexamethyl-1,4,8,1 l-tetraazacyclo- 
tetradecane, L2, is known to exist in two isomeric 
forms, (Y and /I [4]. The latter, which has the trans 
I configuration [2], is more stable in neutral and 
alkaline solutions [4]. In this isomer the nickel 
is also relatively exposed [4], see Scheme 1. We 
decided, therefore, to check what effects the N- 
methylation of this isomer has on the properties of 
its monovalent nickel complex. 
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Experimental 

The complex NiLz(C104)a was prepared by mix- 
ing the free ligand with Ni(CH&Os)s in methanol at 
60 “C, addition of NaC104, cooling down and filtra- 
tion. The precipitate was recrystallized from 0.01 
M HC104. The orange crystals thus obtained have an 
IR spectrum in KBr with absorptions at 3195 cm-‘, 
attributed to the N-H stretching, and a broad band 
at 1110 cm-’ and a narrow one at 625 cm-’ both due 
to the perchlorate. The visible absorption spectrum 
in aqueous solutions has A,, = 453 nm, emax = 
105 M-’ cm-‘. The NMR spectrum in CFsC02H con- 
sists of a doublet at 1.23 ppm, six protons, attributed 
to the methyls bound to the assymetric carbon; a 
singlet at 1.33 ppm, six protons, attributed to the 
equatorial methyls of the C(CHa)s groups; a singlet 
at 2.36 ppm, six protons, attributed to the axials 
methyls of the C(CHs)* groups. Additional peaks 
between 1.7-2.0 ppm are due to the methylenic 
groups of the five-membered rings and between 1.4- 
1.7 ppm to the methylenic groups of the six-member- 
ed rings. The visible, IR and NMR data are in accord 
with the reports in the literature [4]. 

The complex NiL,(ClO& was prepared by a 
procedure analogous to that introduced by Wagner 
and Barefield for analogous complexes [5]. In a 
three-neck flask fitted with a condenser, 5 g of NiL2- 
(C104)a were dissolved in 50 ml MeaS under nitro- 
gen. After 15 min of stirring 10 g of powdered KOH 
was added; the colour changed from yellow to deep 
blue. After an additional 15 min of stirring, 10 ml 
CHsI were added. The solution warmed up as a 
result and changed its colour to green. After slow 
cooling the solution became pmkkviolet. (In some 
cases this change in colour occurred only after pro- 
longed cooling in the refrigerator). Addition of a 
1:3 mixture of ethanol:ether resulted in the precipi- 
tation of NiLlIZ. After filtration the precipitate was 
dissolved in hot water saturated with NaC104 or 
KPF,; cooling resulted in the precipitation of NiLr- 

(ClO& or NiLr(PF&, respectively, which were 
recrystallized from hot water, yield cu. 70%. Anal. 
Calc. for NiL,(PF,),: C, 34.85; H, 6.43; N, 8.12. 
Found: C, 34.56; H, 5.90; N, 7.72%. The complex 
has no absorption at 3 195 cm-’ indicating that all 
the N-H groups were indeed methylated. The visible 
spectrum of NiLr(PF& in aqueous solutions consists 
of a band at 546 nm with E = 190 M-’ cm-‘. The 
NMR spectrum in CFaC02H consists of a doublet 
at 1.16 ppm, six protons, attributed to the methyls 
bound to the asymmetric carbon (only half of the 
doublet is clear; the second half overlaps with the 
next peak). The singlet due to the equatorial methyls 
of the C(CHa)Z groups appeared at 1.18 ppm, six 
protons; the singlet of the axial methyls appeared at 
2.78 ppm, six protons. There are two further singlets, 
six protons each, which are not observed for NiL2- 
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(Clod)*, at 2.81 and 3.24 ppm. These are attributed 
to the N-CHs groups; the position of these peaks 
is in accord with that reported for the N-CHs 
groups of NiL5(C104)a [6]. The shift in the peak 
of the equatorial methyls from 2.36 ppm for NiL2- 
(Clod)* to 2.78 ppm for NiLI(C104)2 indicates that 
in the latter complex these methyls are nearer to the 
NiN4 plane and are therefore more deshielded by the 
unisotropic field of the Ni’+ center. The results thus 
prove that indeed NiLr’+ is a complex of Ni2+ with 
5,12-rac-1,4,5,7,7,8,11,12,14,14-decamethyl-l,4,8, 
1 1-tetraazacyclotetradecane. Furthermore, the NMR 
data strongly support the conclusion that the 
complex has maintained the tram I configuration of 
the 0 isomer of NiL22+ which was used as a starting 
material. 

All other materials were of A.R. grade and were 
used without further treatment. All solutions were 
prepared with use of heat-distilled water that was 
then passed through a Millipore water purification 
setup, the final resistance being >lO Ma/cm. 

The electrochemical, pulse radiolysis and spectro- 
scopic measurements were identical to those prev- 
iously described in detail [l] . 

Results and Discussion 

In Fig. 1 are shown typical cyclic voltammograms 
of NiLr2” and NiL22+ m aqueous solutions. The results 
clearly indicate that the reduction of both complexes 
is electrochemically reversible. However, the oxida- 
tion wave for NiL2 is considerably lower than the 
reduction wave, indicating that the life time of NiL2+ 
is short, t,,2 < 1 min. On the other hand, the results 
indicate that NiLr + is stable on the time scale of 
the experiment. The cyclic voltammograms of NiLr2+ 

Fig. 1. Cyclic voltammograms of NiLI*+ and NiLz2+. 

Metrohm E 410 hanging mercury dropping electrode served 

as a cathode, the auxiliary electrode was a Pt wire, and an 

Ag/AgCl electrode served as a reference electrode. (a) 57 

mV/s, solution composition: 1.0 X 10e3 M NiLlIz, 1.0 M 

Na2S04 at pH 6.0; (b) 44 mV/s, solution composition 5.0 x 
10K3 M NiL#104)2,0.1 M NaC104, pH 6.0. 
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Fig. 2. Correlation between the redox potentials of NiL*+ 

complexes and the maxima of their visible absorption band. 
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ne.). Data for NiL3 

*+(Ly = 1,4,8,12-tetraazapentacyclodeca- 

, NiLd*+, NiLs*+, NiLe*+ from ref. 2 

and for NiL, *+ from ref. 4. 

are independent of time in contrast to those of 
NiLs*+. 

The results clearly indicate that N-methylation 
shifts the redox potentials of NiL2*+ to a less nega- 
tive potential by 0.50 V in analogy to the effect of 
N-methylation on the redox potential of NiL4*+ 
and NiL6*+ [l]. Th e correlation of the redox poten- 
tial of a series of NiLI*’ complexes in aqueous solu- 
tion with 10 Dq for these complexes as determined 
spectrophotometrically [7] is plotted in Fig. 2. The 
correlation clearly points out that the redox poten- 
tial is shifted to less negative potentials with the 
decrease in the ligand field splitting caused by the 
ligand. This finding is in accord with earlier reports 
[ 1, 71. It is of interest to note that the results seem 
to indicate that the ligand field splitting in NiLI*’ 
is smaller than expected from the redox potential 
The effect of N-methylation on the relative ligand 
field splittings of NiLa *+ and NiLr *+ is in accord with 
expectations [5]. 

The results do not support the suggestion that the 
shift in the redox potential upon N-methylation is 
mainly due to either the increase in the ligand cavity 
or to the increase in the hydrophobic nature of the 
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complex. Though X-ray crystallographic data are 
not available, it is difficult to believe that N-methyla- 
tion of NiL2*’ and NiL6*+ will cause a similar increase 
in the cavity size. Furthermore, it is unreasonable 
to expect that the cavity size of Lr, Ls and L6 is 
considerably larger than that of 1,4,8,12_tetraaza- 
cyclopentadecane, as the results [3] would indicate 
if the cavity size were the major factor affecting the 
redox potential. Due to the different conformation 
of the ligand one expects a considerably higher solva- 
tion energy for NiLI*+ and NiL2*+ than for NiLs*+ 
and NiL6*+. (Th’ 1s expectation is verified by the 
observation that the stability constant for the forma- 
tion of NiL,OH+ and NiL20H’ is considerably higher 
than for that of NiLsOH’ and NiLeOH’, respectively 

PI 1. 
One would therefore expect that the increased 

hydrophobic nature upon N-methylation would have 
a larger effect on the redox potential for the NiLs*‘/ 
NiL6*+ couple than for the NiL12+/NiL2*+ couple. 
Therefore, one has to conclude that the shift of the 
redox potential to less negative potentials upon N- 
methylation is due to the fact that tertiary amines 
are weaker u donor ligands than secondary amines. 

Helium saturated solutions containing 1 X 10” M 
NiL1(C10a)2, 0.1 M HC02Na, at pH 7.6 were irra- 
diated in a 6oCo-y source by a dose of cu. 50000 
rad. Under these conditions the e, and CO*- radicals 
formed which reduced NiLI*+ to NiLI+ [l]. The 
UV-Vis spectrum of NiLI+ thus formed was measur- 
ed in a Carry 17 spectrophotometer. The spectrum 
consists of one absorption band with h,, = 335 f 

3 nm, emmax = 2200 f 400 M-r cm-r. (The molar 
absorption coefficient was measured by the pulse 
radiolysis technique, in analogy to that of the other 
monovalent nickel complexes [ 1, 31. The absorp- 
tion due to NiL: in this solution disappeared 
slowly; after 20 h ca. 86% of the absorption still 
remained. As the solution was kept in a spectrophoto- 
metric cell sealed with a glass joint, some of the 
disappearance might be due to oxygen penetration. 
We thus conclude that the half-life time of NiLI+ 
in neutral solutions is longer than 90 h. 

The results thus indicate that the spectral proper- 
ties of the divalent and monovalent nickel complexes, 
their redox potentials and the life times of the mono- 
valent complexes are similar for the complexes in the 
rruns I and trans III configuration. N-methylation 
lowers the ligand field splitting for both isomers 
and hinders the ligand loss reaction. 
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