

Synthesis and reactivity of $(indole)Mn(CO)₃$ ⁺ complexes. Electrophilic activation of the indole 4 and 7 positions

W.J. Ryan, P.E. Peterson, Y. Cao, P.G. Williard and D.A. Sweigart* Department of Chemistry, Brown University, Providence, *RI 02912 (USA)*

C.D. Baer and C.F. Thompson

Department of Chemistry, Providence College, Providence, RI 02908 (USA)

Y.K. Chung* and T.-M. Chung **Department of Chemistry, Seoul National University,** *Seoul 151-742 (South Korea)*

(Received June 2, 1993)

Due to the importance of the indole nucleus **1** as the basic structural unit in many natural products, an enormous amount of research has dealt with the functionalization of the pyrrole and the carbocyclic rings [1]. While electrophilic substitution at the electron-rich pyrrole C-2 and C-3 positions is easily achieved, functionalization at the carbocyclic C-4 and C-7 positions is difficult. Recently, progress in this regard has been made using organometallic reagents [2-6]. Nucleophilic substitution of the chloride in 4- and 5-chloroindoles is facilitated by complexation of the carbocyclic ring to the $CpRu^{+}$ moiety [3]. Electrophilic activation of the C-4 and C-7 positions in (indole) $Cr(CO)$ ₃ complexes is great enough to permit attack by strong carbanion donors; the preference for C-4 or C-7 attack can be modulated by placing substituents with suitable electron/ steric properties at $C-3$ or N-1 [4, 5]. In a related approach, lithiation of the C-4 or C-7 sites in $(indole)Cr(CO)$, complexes, followed by treatment with an electrophile, affords substitution at these positions $[6]$.

It is known that arenes can be coordinated under mild conditions to the $Mn(CO)_{3}^{+}$ moiety and that the

resultant (arene) $Mn(CO)₃$ ⁺ complexes are very electrophilic [7, 81. Reaction with a wide range of nucleophiles, including weak ones, can be used as a means of introducing functionalities on the arene; some recent applications of biological interest are given in ref. 9. Indoles deprotonated at the nitrogen are known to coordinate to $Mn(CO)₃$ ⁺ through the pyrrolyl ring to afford n^5 -indolyl complexes [10]. We report herein that free indoles containing hydrogen or other substituents at the nitrogen bind to the metal through the carbocyclic ring to form (indole) $Mn(CO)₃$ ⁺ complexes that are highly electrophilic at C-4 and C-7, thus providing a route to the direct functionalization of the indole nucleus at these positions. In comparison to chromium and ruthenium analogues *(vide supra)*, the manganese systems may prove to be especially useful due to superior [8] electrophilic activation.

The indole complexes 2 were prepared as BF_4 ⁻ salts by stirring $Mn(CO)_{5}Br$ in CH_2Cl_2 with one equivalent of $AgBF₄$ for 1 h, then adding a slight excess of the indole and refluxing for 1 h. After filtration, the solvent was removed and the residue extracted with acetone. The products were precipitated with diethyl ether in yields of 60 to 90%. Five indole complexes were synthesized in this manner (2: $R = H$, Me, tosyl, SiPh₂Bu^t, $SiPr₃$). The benzofuran analogue 3 was similarly synthesized in 60% yield. All new complexes were characterized by NMR and IR. For example, for [(indole) $Mn(CO)_{3}$]BF₄ (2, R = H): IR (CH₂Cl₂): 2069, 2008 cm⁻¹; ¹H NMR (CD₃COCD₃): δ 11.6 (s, N-H), 8.24 $(d, J=3.2, H^2)$, 7.76 $(d, J=7, H^7)$, 7.60 $(d, J=7, H^4)$, 6.99 (d, $J=3.2$, H³), 6.60 (t, $J=6.5$, H⁵), 6.37 (t, $J=6.5$, H⁶); ¹³C(¹H} NMR (CD₂Cl₂): δ 88.3 (C⁷), 89.9 (C⁵), 93.1 (C⁶), 95.4 (C⁴), 103.7 (C^{3a}), 104.8 (C³), 117.2 (C^{7a}), 140.3 (C²). *Anal.* Calc. for C₁₁H₇NO₃MnBF₄: C, 38.5; H, 2.06; N, 4.08. Found: C, 38.4; H, 2.01; N, 4.03%. For $[(\text{benzofuran})Mn(CO)_3|BF_4(3):IR(CH_2Cl_2):2080,$ 2019 cm⁻¹; ¹H NMR (CD₃NO₂): δ 8.31 (d, J=2, H²), 7.47 (d, $J=7$, H⁴), 7.38 (d, $J=7$, H⁷), 7.27 (d, $J=2$, H3), 6.61 (t, *J=6.5,* H6), 6.32 (t, *J=6.5,* H'); FAB-MS, *m/z* 257 (M+).

Verification that the manganese in 2 is coordinated to the carbocyclic and not the pyrrole ring was provided by the X-ray structure of 2 ($R=H$), shown in Fig. 1**.

^{}Crystal data for [(indole)Mn(CO),]BF,: space group P2,lc with b** $\frac{1}{2}$ $\frac{1}{2$ $a = 10.026(2)$, $b = 10.202(3)$, $c = 13.480(4)$ Å, $\beta = 102.06(2)$ °, $V = 1348.4(6)$ \AA^3 , $Z = 4$, $D_{\text{calc}} = 1.69$ g cm⁻³. Data collected at 20
^oC on a Nicolet R3m diffractometer with Mo K α radiation, p=9.92 cm-theoret restinguished with *MD* red radiation, **2087 unique reflections** *I>* **1.00(I) to** *R=0.059 (R,=O.O61,* ***Authors to whom correspondence should be addressed.** $GOF = 1.79$. $GOF = 1.79$.

with the thermal ellipsoids at the cation in [[11100]

The molecule has a 'piano stool' structure with a planar indole ligand and with highly linear Mn-C-O linkages indole ligand and with highly linear Mn–C–O linkages
that almost exactly bisect the carbocyclic bonds $C(3a) - C(4)$, $C(5) - C(6)$ and $C(7) - C(7a)$. The average Mn-indole bond length is 2.216(5) \AA , but there exists considerable variation; the bonds to the bridgehead carbons $C(3a)$ and $C(7a)$ are the longest at 2.293(5) and 2.290(4) Å, next in length are $C(4)$ and $C(7)$ at $2.250(4)$ A, heat in jeught are $C(4)$ and $C(7)$ at $204(6)$ and $2107(2)$ \AA $204(0)$ and $2.157(5)$ A, and the shortest are $C(5)$ and $260(6)$ and $2.156(5)$ $\frac{3}{4}$ N. BH, reacted rapidly $\mathcal{L}(V)$ at 2.150(0) and 2.155(5) A. NaDH₄ reacted rapidly with complex μ (κ -11) in TITE to give an ω/ν isolated yield of the product of hydride addition to C-4 and C-7 (complexes 4 and 5, ratio 0.8:1). Other nucleophiles, \mathcal{L}^{eq} (complexes \mathcal{L} and \mathcal{L} , rand 0.0.1). Other intercopinies, i g. Linic, ivali, Lich₂c(O)civic₃, the not a

Addition to the indole complexes having substituents Addition to the major complexes having substituents The definition of $\frac{1}{2}$ for a range of nucleophiles, i.e. $\frac{1}{2}$ C-4 and/or C-7 for a range of nucleophiles, including
ones as weak as NaCH(CO₂Me)₂. A summary of the res as weak as reacting $\sum_{i=1}^{\infty}$. A summary of the $\frac{3}{2}$ also underwent nucleophilic attack at $CA - 4.67$. 3 also underwent nucleophilic attack at C -4 and C -7.)
An examination of the C -4/ C -7 product ratios indicates that it is possible to direct attack predominantly at the

TABLE 1. Results of nucleophilic addition to indole and benzofurante 1. Results of nucleon

Complex	Nucleophile	Yield ^b $(\%)$	Product ratio ^c $C-4/C-7$
2, $R = H$	NaBH _a	86	0.8
2. $R = Me$	NaBH.	85	0.5
2. $R = Me$	LiMe	68	0.5
2, $R = Me$	LiCMe ₂ CN	68	2
2. $R = Me$	LiCH ₂ CO ₂ Bu ^t	70	0.7
2, $R = Me$	NaCH(CO ₂ Me) ₂	d	3
2. $R =$ tosyl	LiMe	66	1
2, $R =$ tosyl	LiCMe ₂ CN	65	2
2, $R =$ SiPh ₂ Bu ^t	LiCMe ₂ CN	70	5
2, $R =$ SiPr ¹ ₃	LiCMe ₂ CN	30 ^e	>10
3	Bu_4NBH_4	70	2
3	LiMe	80	1.2

^aReactions were done in THF or $CH₂Cl₂$ at room temperature **for BIA-C for BIA-C for all other nucleon**
 \overline{P}^{α} at room temperature. bisolated a mixture of a mixture of construction of the mixture of construction of a mixture of construction of the state of the st **Existence** *yield* consisting of a mixture of complexes $\overline{ }$ and *5*. $\frac{1}{2}$ IR. $\frac{1}{2}$ IR. IS INCREASED **product** that isolated

C-4 site provided the R group on the pyrrole nitrogen presents sufficient steric bulk. For example, with LiCMe,CN as the nucleophile, large silyl groups on the nitrogen lead to a large $(-SiPh₂Bu^t)$ or exclusive $(-SiPrⁱ₃)$ preference for attack at C-4.

'H NMR was used to determine the relative amount of 4 and 5 in the (unseparated) product mixtures. In order to verify the assignments, one of the dienyl isomers was isolated as follows. LiCMe₂CN addition to 2 $(R = S_i Pr_i^i)$ gave a single isomer as judged by NMR. $R - 3H + 3$ gave a single isomer as judged by NWIN. sapid chromatography on alumnia caused partial desilylation and led to the isolation of both desilylated (30% yield) and silylated product (the latter being completely converted to the former upon stirring in a suspension of alumina in ether for 30 min). Crystals of the desilylated complex were easily grown; the Xrefer the desiry area complex were easily grown, the X^2 structure corresponds to isomer 4, with the nucleophile structure corresponds to isomer 4, with the nucleophile exo to the metal. Several features of the structure in Fig. 2 are noteworthy. The dienyl part of the carbocyclic ring is planar and forms an angle of 6.5° with the pyrrole plane. The saturated carbon C-4 is folded about the dienyl plane by an angle of 29.6". This value is much smaller than the $40-43^\circ$ found [11] with other cyclohexadienyl-man the 40-45 Toung [11] with other reflects the influence of bonding between the diengl reflects the influence of bonding between the dienyl and pyrrole π systems. Also indicative of this interaction

^{*}All of the dienyl complexes 4 and 5, as well as those derived from the dientyl complexes 4 and 3, as well as those defived from nucleophilic addition to 3, were characterized by NMR and IR. For example, for 4 $(R = Me, Nu = H)$: IR (CH_2Cl_2) : 1999, 1912 cm⁻¹; ¹**H** NMR (CD₂Cl₂): δ 6.87 (d, J=3, H²), 6.28 (d, J=6, H⁷), 5.78 (d, J=3, H³), 4.94 (t, J=6, H⁶), 3.52 (s, Me), $-0, \text{ } n$), 3.19 (d, J=3, H), 4.54 (t, J=0, H), 3.32 (s, Me) \mathbf{A} : (**n**), 3.19 (**i**, $\mathbf{J} = 0$, **n**), 2.04 (**d**, $\mathbf{J} = 14$, **n**). For \mathbf{J} (**K** = Me $Nu = H$): ¹H NMR (CD₂Cl₂): δ 6.72 (d, J = 3, H²), 6.34 (d, J = 5.5, **H⁴), 5.96 (d, J = 3, H³), 4.96 (t, J = 6, H⁵), 3.7 (dd, J = 5.5, 14, H⁷), 3.49 (s, Me), 3.16 (t, J = 6, H⁶), 2.75 (d, J = 14, H^{7-exo}).**

^{*}Crystal data for 4 (R=H, Nu=CME, Nu=C with a set of $\mathbf{w} = \mathbf{w} \cdot \mathbf{w} = \mathbf{w} \cdot \mathbf{w} \cdot \mathbf{w}$ **, and \mathbf{w} = \mathbf{w} \cdot \math** with $a = 9.715(4)$, $b = 13.703(5)$, $c = 13.593(6)$ Å, $\alpha = 61.20(3)$, β = 76.56(3), γ = 70.74(3)°, $V = 1491.0(10)$ \AA ³, $Z = 4$, $D_{\text{cak}} = 1.44$ g cm⁻³. Data collected at 20 °C on a Nicolet R3m diffractometer with Mo K α radiation, $\mu = 8.59$ cm⁻¹, 2 θ scan limits 4.0–48°, 379 variables refined with 4335 unique reflections $I > 1.0\sigma(I)$ to $R = 0.046$ ($R = 0.047$, $GOF = 1.81$).

Fig. 2. An ORTEP drawing of complex $4 (R = H, Nu = CMe₂CN)$ with the thermal ellipsoids at the 30% level.

are long bond lengths between manganese and the bridgehead carbons; Mn-C(3a), 2.434(2); Mn-C(7a), 2.266(2) Å (compared to Mn–C(5), 2.162(3); Mn–C(6), $2.112(3)$ Å).

Supplementary material

Atomic numbering schemes and tables of crystallographic data, atomic positional parameters and thermal parameters, bond lengths and angles, and selected torsion angles for $[(indole)Mn(CO)₃]BF₄(2, R = H)$ and $4 (R = H, Nu = CMe₂CN)$ are available from the authors.

Acknowledgements

This work was supported by a grant from the United States Science Foundation (No. CHE-8821588) and Korea Science Foundation (No. 90-03-00-18). C.D.B. and C.F.T. are grateful to Providence College for providing summer research support.

References

- **1** T.L. Gilchrist, *Heterocykic Chemistry,* Pitman, Marshfield, MA, 1985; D.C. Hotwell, *Tetrahedron, 36 (1980) 3123;* A.P. Kozikowski, *Heterocycles, 16 (1981) 267.*
- 2 J.H. Tidwell, D.R. Senn and S.L. Buchwald, J. *Am. Chem. Sot., 113 (1991) 4685;* R.C. Larock and E.K. Yum, *J. Am. Chem. Sot., 113 (1991) 6689.*
- 3 R.M. Moriarty, Y.Y. Ku and U.S. Gill, *Organometallics, 7* 4 M.F. Semmelhack, W. Wulff and J.L. Garcia, J. *Organomet. (1988) 660,* R.M. Moriarty, U.S. Gill and Y.Y. Ku, *J. Organomet. Chem., 350 (1988) 157;* U.S. Gill, R.M. Moriarty, Y.Y. Ku and I.R. Butler, J. *Organomet. Chem., 417 (1991) 313.*
- 5 A.P. Kozikowski and K. Isobe, J. *Chem. Sot., Chem. Commun. Chem., 240 (1982) CS.*
- 6 P.J. Beswick, C.S. Greenwood, T.J. Mowlem, G. Nechvatal *(1978) 1076.*
- 7 P.J.C. Walker and R.J. Mawby, Inorg *Chim. Acta, 7 (1973)* and D.A. Widdowson, *Tetrahedron, 44 (1988) 7325;* N.F. Masters, N. Mathews, G. Nechvatal and D.A. Widdowson, *Tetrahedron, 45 (1989) 5955.*
- 8 L.A.P. Kane-Maguire, E.D. Honig and D.A. Sweigart, *Chem. 621;* P.L. Pauson and J.A. Segal, J. *Chem. Sot., Dalton Trans., (1975) 1677, 1683;* K.K. Bhasin, W.G. Balkeen and P.L. Pauson, J. *Organomet. Chem., 201 (1981) C25;* Y.K. Chung, P.G. Williard and D.A. Sweigart, *Organometallics, I (1982) 1053;* R.D. Pike and D.A. Sweigart, *Synlett., (1990) 564;* F. Rose-Munch and K. Aniss, *Tetrahedron Lett., 31 (1990) 6351.*
- 9 W.H. Miles, P.M. Smiley and H.R. Brinkman, J. *Chem. Sot., Rev., 84 (1984) 525.*
- 10 P.L. Pauson, A.R. Qazi and B.W. Rockett, J. *Organomet. Chem. Commun. (1989) 1897;* W.H. Miles and H.R. Brinkman, *Tetrahedron Lea, 33 (1992) 589;* G.R. Krow, W.H. Miles, P.M. Smiley, W.S. Lester and Y.J. Kim, J. Org. *Chem., 57 (1992) 4040;* A.J. Pearson, P.R. Bruhn, F. Gouzoules and S.-H. Lee, J. *Chem. Sot., Chem. Commun., (1989) 659.*
- 1 **M.R. Christian F.R. Scholars** Chem., 200 (2000) 00:
1 M.R. Christian F.R. Scholar Lines, Chem., 8 (1960) 1950; *Chem., 7 (1967) 325;* L.-N. Ji, D.L. Kershner, M.E. Rerek and F. Basolo, J. *Organomet.* Chem., 296 (1985) 83.
- L.A.P. Kane-Maguire, E.D. Honig and D.A. Sweigart, J. *Chem. Sot., Chem. Commun., (1984) 345;* SD. Ittel, J.F. Whitney, Y.K. Chung, P.G. Williard and D.A. Sweigart, *Organometallics, 7 (1988) 1323.*