Short Communication

A first robust complex of tetradentate TCNQ. Evidence for two weakly coupled diruthenium(II,III) subsystems in symmetrical tetranuclear complexes $\{(\mu_4\text{-}TCNX)[\text{Ru}(\text{NH}_3)_5]_4\}^{8+}$ (TCNX = TCNE, TCNQ)

Michael Moscherosch and Wolfgang Kaim*

Institut für Anorganische Chemie der Universität, Pfaffenwaldring 55, D-7000 Stuttgart 80 (Germany)

(Received September 21, 1992; revised December 7, 1992)

Abstract

The air-stable complexes { $(\mu_4$ -TCNX)[Ru(NH₃)₅]₄}(PF₆)₈ which contain reduced TCNX ligands show spectroscopic equivalence of the four metal coordination sites on the ¹H NMR and vibrational time scales and very close lying frontier orbitals (UV–Vis–NIR, electrochemistry). Both the two-electron oxidation behaviour and the magnetic moment of $\mu_{eff} = 2.7$ suggest a weak interaction between two mixed-valent malonodinitrilato/(Ru^{2.5})₂ subsystems.

Tetranuclear (μ^4) complexes of the small conjugated tetranitrile acceptors TCNE and TCNQ have so far been reported only in the form of {(μ_4 -TCNE)-[Ru(NH₃)₅]₄}(PF₆)₈ [1] and (μ_4 -TCNX)[Mn(CO)₂-

*Author to whom correspondence should be addressed.

229

 $(C_5R_5)]_4$ (TCNX = TCNE and TCNQ) [2]. Unfortunately, the organometallic manganese complexes display a strong metal-based paramagnetism [2, 3] which precludes meaningful NMR experiments and renders these complexes very (photo)labile, especially in the polar environments necessary for electrochemistry; except for one reversible reduction wave all other redox processes of these organomanganese compounds are irreversible [2].

In order to extend the knowledge about the very unusual electronic structure of such polymetalla- π -systems [2] we have prepared the new charged ion $\{(\mu_4\text{-}TCNQ)[Ru(NH_3)_5]_4\}^{8+}$ (1) and reinvestigated the previously reported [1] TCNE analogue 2.

Complex 1 was obtained as the octakis(hexafluorophosphate) salt by reacting an acetone solution of TCNQ with four equivalents of aqueous $[Ru(NH_3)_5(H_2O)]Cl_2$ for 1 day under argon. The completely light- and airstable dark-green complex was precipitated with a saturated aqueous ammonium hexafluorophosphate solution and recrystallized from acetone/dichloromethane (2/1) in 83% yield. Complex 2 was obtained accordingly. Elemental analysis and a well-resolved ¹H NMR spectrum in acetone-d₆ (Fig. 1) confirmed the purity and the composition of 1. (1H NMR of 1 (250 MHz, acetoned₆): δ 2.68 (s, 48H, NH₃(eq)), 3.97 (s, 12H, NH₃(ax)), 7.70 (s, 4H, CH); NH_3 signals exchangable with D_2O_2) The full equivalence of the TCNQ ring protons and of the axial and equatorial NH₃ ligands is supported by the IR vibrational data (IR (KBr pellet). 1: 3437(br), 3293(s), 3237(s), 3165(s), 2153(s), 2096(vs), 1631(m) cm⁻¹. 2: 3429(br), 3302(s), 3240(sh), 3177(s), 2163(s), 2121(vs), 1630(m) cm⁻¹) which also indicate high spectroscopic symmetry. The nitrile stretching frequencies at 2153(s) and 2096(vs) cm⁻¹ (1) and 2163(s) and 2121(vs) cm^{-1} (2) in KBr or acetone clearly indicate

Fig. 1. ¹H NMR spectrum of 1 in acetone-d₆ (x: H_2O and solvent signals).

Fig. 2. Differential pulse voltammogram of complex 1 and 1 molar equivalent of ferrocene (x) in CH₃CN/0.1 M Bu₄NPF₆ at 70 mV/s scan rate.

[4] the reduced nature of the TCNX ligands (oxidation state -II) and hence the partially oxidized, i.e. +II/ + III mixed-valent character of the coordinated metals.

Both compounds 1 and 2 show essentially similar electrochemical behaviour (cyclic and differential pulse voltammetry (CH₃CN/0.1 M Bu₄NPF₆, potentials in V versus ferrocene/ferrocenium at 100 mV/s). 1: oxidation at +0.19 (2e) and +0.64 V (1e), reduction at -0.59 (1e) and -0.84 V (1e). 2: oxidation at +0.37 (2e) and +0.70 V (1e), reduction at -0.75 (1e) and -1.11 V (1e)) which, for 2, is very different from the results reported previously [1]*. While two electrochemically reversible one-electron reductions occur at negative

potentials versus ferrocene, the oxidation involves a two-electron process for 1 (Fig. 2) and 2; in contrast, a series of well-separated one-electron processes had been reported for 2 [1]*. Assuming a charge distribution according to the oxidation state formulation $(TCNX^{2-})(Ru^{2.5})_4$, the metal-based two-electron oxidation to $(TCNX^{2-})(Ru^{2.5})_2$ moleties. Delocalized mixed-valent Ru^{II}Ru^{III} = $(Ru^{2.5})_2$ complexes of malonodinitrile anions were found to be rather stable by Krentzien and Taube [6].

The proximity of HOMO and LUMO, particularly in complex **1**, is not only evident from the small difference of 0.78 V between oxidation and reduction potentials, it is also responsible for the rather broad ($\Delta v_{1/2}$ =3200 cm⁻¹) and very intense (ϵ 50 000 M⁻¹ cm⁻¹) absorption band in the near-IR region (ν_{max} 10 460 cm⁻¹, E_{max} 1.30 eV). Due to the similarity with optical absorption properties of Ru^{II}Ru^{III} complexes of malonodinitrilato anions [6] we attribute these long-wavelength bands to intervalence transitions (IT) whithin individual Ru-NCCCNRu moieties.

Additional evidence for the weak coupling of two mixed-valent (S = 1/2) dimers comes from magnetic susceptibility measurements of 1 which yield an effective magnetic moment of 2.7 at 298 K, corresponding to two unpaired electrons. Solid 1 shows broad EPR signals with g_{\perp} 2.53 and g_{\parallel} 2.03 at 4 K.

Summarizing, the symmetrical complexes 1 and 2 contain apparently two weakly interacting pairs of strongly coupled Ru^{II}Ru^{III} dimers. The weak interaction is attributed to a reduced conjugation within the bridging TCNX ligands, probably caused by non-planarity due to rotation around the carbon–carbon single bonds adjacent to the RuNCCCNRu moieties.

Acknowledgements

Support from DFG (SFB 329) is gratefully acknowledged. We also thank Dr J. Jordanov (Grenoble) for preliminary susceptibility measurements.

References

- 1 S. I. Amer, T. P. Dasgupta and P. M. Henry, *Inorg. Chem.*, 22 (1983) 1970.
- 2 R. Gross-Lannert, W. Kaim and B. Olbrich-Deussner, *Inorg. Chem.*, 29 (1990) 5046.
- 3 W. Kaim, T. Roth, B. Olbrich-Deussner, R. Gross-Lannert, J. Jordanov and E. K. H. Roth, J. Am. Chem. Soc., 114 (1992) 5693.
- 4 B. Olbrich-Deussner, R. Gross and W. Kaim, J. Organomet. Chem., 366 (1989) 155.
- 5 M. Biner, H.-B. Bürgi, A. Ludi and C. Röhr, J. Am. Chem. Soc., 114 (1992) 5197.
- 6 H. Krentzien and H. Taube, Inorg. Chem., 21 (1982) 4001.

^{*}The UV-Vis spectra of 2 shown in ref. 1 suggest the presence of air-oxidized ruthenium complexes. The absorption at 530 nm [1] is absent when the complex formation is carried out in an argon atmosphere.