Short Communication

Interaction of [(dien)PtBr]Br with 6-oxopurine nucleosides

Vassiliki Theodorou, Anna Nicolaou

Department of Chemistry, University of Athens, Athens (Greece)

and Nick Hadjiliadis*

Department of Chemistry, University of Ioannina, Laboratory of Inorganic and General Chemistry, Ioannina 45-110 (Greece)

(Received August 31, 1992; revised January 19, 1993)

Abstract

Complexes of the general formulae $[(dien)Pt(nucl)]Br_2$, with nucl=guanosine (guo), inosine (ino), xanthosine (xao) and 9-methyl guanine (9-MeG) were first isolated from the reactions of [(dien)PtBr]Br with the nucleosides. Further reactions between the $[(dien)Pt(nucl)]Br_2$, [(dien)PtBr]Br and K_2PtX_4 (X=Cl, Br) complexes produced new ones of formulae $[(dien)Pt(nucl-H^+)]Br$, $[\{(dien)Pt_2(nucl-H^+)](ClO_4)_3$, $[(dien)Pt(nucl-H^+)PtX_3]$ and $[(dien)Pt(nucl)](PtX_4)$ (X=Cl, Br). All complexes were characterized by elemental analysis, conductivity measurements, IR and ¹H NMR spectra. All the nucleosides are firstly coordinated through their N₇ atoms. This is followed by an attack of a second Pt(II) atom at N₁, after deprotonation of this site in the dinuclear complexes.

Introduction

Purine nucleobases like guanine (guo) or adenine (ado) are known to coordinate preferentially through their N₇ positions with Pt(II) [1, 2]. The N₁ site is also a potential coordination site in adenines [3, 4], and also in guanines after deprotonation of this position [5–7]. Complexes with the guanine nucleobases coordinated with both N₇ and N₁ simultaneously with two different Pt(II) atoms, have also been characterized, both in the solid state [7] and in solution [5, 6, 8–10]. In one case, 9-ethylguanine was found to coordinate with all three sites N₁, N₃ and N₇ with Pt(II) [9].

Deprotonation of the N_1 site of guanines becomes easier after coordination of the base through N_7 with Pt(II), the pK_a of N_1 -H being lowered by 1,5-2 logarithmic units [5-10]. In the present note, we report first the preparation of mononuclear complexes of [(dien)PtBr]Br (dien=diethylenetriamine) with the nucleosides inosine (ino), guanosine (guo) and xanthosine (xao). Binuclear complexes of these N₇ coordinated mononuclear complexes with $[(dien)Pt]^{2+}$ and $[PtCl_3]^-$ involving also the N₁ site following deprotonation were subsequently prepared and characterized. For comparison purposes the known complexes with 9-MeG were also prepared [7].

Results and discussion

The structures of the nucleosides used in the present study are shown in Fig. 1.

The 1:1 complexes of the nucleosides guo, ino, xao and 9-MeG with [(dien)PtBr]Br were prepared in aqueous solutions, according to the reaction

$$[(dien)PtBr]Br + nucl \longrightarrow [(dien)Pt(nucl)]Br_2$$
(1)

The nucleosides were N_7 coordinated in all cases as expected [11–13] and as their ¹H NMR spectra revealed (see below). The pK_a values of the N₁-H protons of the N₇ coordinated nucleosides were subsequently determined with pH metric titrations and are included in Table 1, together with their elemental analysis. They were found about 1.5–2 logarithmic units lower than the ones of the corresponding free nucleosides [5–10].

Based on the lowering of the pK_as of the N_1 -H protons after complexation of N_7 with Pt(II), we at-

Fig. 1. The oxopurine nucleosides used in this study.

^{*}Author to whom correspondence should be addressed.

Compound	C (%)	(%) H	N (%)	Pt (%)	X (%)	pK_a	$\Lambda_{M} \ (\Omega^{-1} \ cm^2 \ mol^{-1})$
[(dien)Pt(guo)]Br ₂	23.23(22.68)	3.50(3.54)	15.14(15.12)	26.60(26.32)	22.1(21.56)	7.65	197 (H ₂ O)
[(dien)Pt(ino)]Br ₂	23.41(23.15)	3.93(3.47)	11.70(13.50)	27.30(26.86)	22.45(22.0)	7.00	195 (H ₂ O)
[(dien)Pt(xao)]Br ₂	22.12(22.65)	3.42(3.39)	13.60(13.21)	26.70(26.28)	22.10(21.53)	4.65	238 (H ₂ O)
[(dien)Pt(9-MeG)]Br ₂	19.20(19.27)	3.15(3.23)	17.58(17.98)	30.93(31.31)	26.10(25.64)	8.15	192 (H ₂ O)
$[{(dien)Pt}_2(guo-H^+)](ClO_4)_3$	17.87(18.37)	3.35(3.25)	12.20(13.09)				290 (H ₂ O)
[{(dien)Pt} ₂ (ino-H ⁺)](ClO ₄) ₃	18.33(18.60)	3.51(3.21)	11.63(12.05)				281 (H ₂ O)
[(dien)Pt(guo-H ⁺)PtCl ₃]				43.25(44.24)	12.60(12.06)		19 (DMSO), 41 (DMF)
[(dien)Pt(ino-H ⁺)PtCl ₃]				45.20(45.01)	12.40(12.27)		15 (DMSO), 33 (DMF)
[(dien)Pt(xao-H ⁺)PtCl ₃]				44.30(44.19)	12.90(12.05)		15 (DMSO), 30 (DMF)
[(dien)Pt(9-MeG-H ⁺)PtCl ₃]				50.60(51.07)	14.01(13.93)		22 (DMSO)
[(dien)Pt(guo-H ⁺)PtBr ₃]				38.40(38.43)	23.90(23.61)		
[(dien)Pt(ino-H ⁺)PtBr ₃]	15.95(16.81)	2.18(2.42)	9.35(9.80)	38.80(39.01)			
[(dien)Pt(xao-H ⁺)PtBr ₃]			,	37.93(38.39)	23.20(23.59)		
[(dien)Pt(9-MeG-H ⁺)PtBr ₃]	13.50(13.39)	1.80(2.13)	12.90(12.49)	43.10(43.49)	27.15(26.71)		
[(dien)Pt(9-MeG)][PtBr4]	13.10(12.28)	1.91(2.06)	11.92(11.46)	40.20(39.89)	32.00(32.67)		36 (DMSO)
Calculated values of the elemen	tal analysis are given	in parentheses.					

tempted reactions of the obtained complexes with $[(dien)Pt(H_2O)](ClO_4)_2$ [7] and K_2PtCl_4 or K_2PtBr_4 in neutral aqueous solutions, as follows

 $[(dien)PtBr]Br + 2AgClO_4 \xrightarrow{(H_2O)}$

$$[(dien)Pt(H_2O)](ClO_4)_2 + 2AgBr \quad (2)$$

$$[(dien)Pt(H_2O)](ClO_4)$$

+ [(dien)Pt(nucl)](ClO₄)₂ $\xrightarrow{-HClO_4}_{-H2O}$

$$[{(dien)Pt}_2(nucl-H^+)](ClO_4)_3$$
 (3)

$$[(dien)Pt(nucl)]X_2 + K_2PtX_4 \frac{\kappa x}{(x - Cl, Br)}$$

$$[(dien)Pt(nucl)](PtX_4)$$
 (4)

 $[(dien)Pt(nucl)](PtX_4) \xrightarrow[PH\sim6]{-HX}{}$

 $[(dien)Pt(nucl-H^+)(PtX_3)] \quad (5)$

The elemental analysis of the isolated compounds agree with their assigned formulae (see Table 1).

The molar conductance values (Λ_M) , also included in Table 1, indicate that the $[(dien)Pt(nucl)]Br_2$ complexes are 1:2 electrolytes, while the binuclear ones are non-electrolytes as expected. The complexes $[(dien)Pt(nucl)](PtX_4)$ however, have Λ_M values in DMSO, approaching the 1:1 electrolytes (see Table 1).

Characteristic IR bands of all the complexes are included in Table 2. The complexes [(dien)Pt(nucl)]Br₂ show the bands in the region of 1600–1700 cm⁻¹ slightly shifted to lower frequencies, due to a Pt(II)-N7 monodentate coordination [12-14] and the retention of the double bond character of the C₆=O group (see Table 2). The band near 1700 cm⁻¹, due to the ν C₆=O vibration, however, disappears and a new band appears near 1635 cm⁻¹ in the dinuclear complexes containing ino, while in the deprotonated [(dien)Pt(ino-H⁺)]Br complex, this band appears near 1600 cm⁻¹. In the guo derivatives on the other hand, the near 1700 cm⁻¹ $\nu C_6 = O$ band of [(dien)Pt(guo)]Br₂ appears at 1600 cm^{-1} in the N₁-H deprotonated and N₇ coordinated complex [(dien)Pt(guo-H⁺)]Br and again near 1635 cm^{-1} in both dinuclear species. The situation in the series of complexes with xao is similar. This behaviour was explained as indicating N₇O₆ chelation, in earlier studies [13, 14], of 6-oxopurine nucleosides with Pt(II) or Pd(II). Possible polymeric structures involving all potential sites (N1, N7, O6) of the 6-oxopurine nucleosides could not be excluded however [13], on the basis of the IR spectra alone. A similar conclusion was also made in the case of the copper(II)-inosinemonophosphate-o-phenanthroline complex [15], with a simultaneous N1, N7, O6 bonding with the metal, as well as in the case of Hg(II)-guo complexes [16].

TABLE 1. Elemental analysis, molar conductance and pK_a values of the compounds

TABLE 2. Characteristic IR and	¹ H NMR bands	of the	compounds
--------------------------------	--------------------------	--------	-----------

Compound	IR bands (cm^{-1})	¹ H NMR t	¹ H NMR bands (ppm)		
		H ₂	H ₈	$\mathbf{H_{1}}^{\prime}$	
guo	1735, 1647, 1605, 1545, 775		8.07	5.98	
[(dien)Pt(guo)]Br ₂	1699, 1643, 1595, 1539, 797		8.30	5.90	
[(dien)Pt(guo-H ⁺)]Br	1600, 1556, 797		8.21	5.85	
[(dien)Pt(guo-H ⁺)PtCl ₃]	1630, 1595, 1530, 785, 325				
$[{(dien)Pt}_2(guo-H^+)](ClO_4)_3$	1635, 1600, 1530, 782		8.36	5.98	
ino	1700, 1598, 1555, 786	8.11	8.22	5.98	
[(dien)Pt(ino)]Br ₂	1699, 1592, 1560, 788	8.03	8.59	5.90	
[(dien)Pt(ino-H ⁺)]Br	1601, 1535, 804	7.86	8.37	5.88	
[(dien)Pt(ino-H ⁺)PtCl ₃]	1638, 1537, 792, 325				
$[{(dien)Pt}_{2}(ino-H^{+})](ClO_{4})_{3}$	1635, 1535, 792	8.47	8.71	6.15	
xao	1700, 1680, 1610, 1580, 717		7.97	5.96	
[(dien)Pt(xao)]Br ₂	1700, 1580, 750		8.42	5.98	
[(dien)Pt(xao-H ⁺)PtCl ₃]	1630, 1585, 720, 320				
$[{(dien)Pt}_{2}(xao-H^{+})](ClO_{4})_{3}$	1638, 1580, 728		8.60	5.95	

Fig. 2. Proposed structures of the dinuclear complexes.

Lippert and co-workers [7] found a band near 1640 cm^{-1} for the N₁,N₇ diplatinated complex of 9-MeG of formula $[{(dien)Pt}_2(9-MeG-N_7,N_1)](ClO_4)_3 \cdot 2H_2O,$ prepared in exactly the same way as our complexes. This frequency is intermediate between the N₇ monocoordinated and N1-H protonated ligand (~1700 cm⁻¹) and the N₇ monocoordinated and N₁-H deprotonated one (1600 cm⁻¹) [7]. An N_7O_6 chelation is not possible in the present case, though an O_6 over N_1 coordination or a simultaneous N1O6 coordination with Pt(II) cannot be excluded. The approximately similar intermediate frequencies of our dinuclear complexes, e.g. 1630–1640 cm⁻¹ (Table 2), however, as well as their similar method of preparation to the complex with 9-MeG (see 'Experimental'), indicates a similar simultaneous N₇,N₁ coordination also here (Fig. 2). At present, such an IR behaviour should be taken as indicating a simultaneous N7,N1 coordination with Pt(II), rather than an N_7O_6 chelation [13, 14]. It should be noted, however, that in the postulated Pd-N₇O₆

chelates with ino or guo, this band was observed at slightly lower frequency, e.g. 1625 cm^{-1} [14].

Other sensitive IR bands include the 1555 cm⁻¹ of free ino, shifted to 1535 cm⁻¹ in the N₇ monocoordinated and N₁-H deprotonated or N₁,N₇ dicoordinated species and the 1545 cm⁻¹ of free guo, shifted analogously to 1530 cm⁻¹. Also, the ring breathing motions of free ino, guo and xao, occurring at 786, 785 and 717 cm⁻¹, respectively, are shifted to higher frequencies upon metal coordination, but to intermediate ones in the N₇, N₁ dinuclear species (higher frequencies in the Pt-N₇ coordinated ligands and the free ligands). Finally, the appearance of a band near 330 cm⁻¹ due to ν Pt-Cl should be mentioned for the complexes containing the PtCl₃⁻ and PtCl₄²⁻ species, but not found in the case of PtBr₃⁻ and PtBr₄²⁻.

The ¹H NMR chemical shifts of the various complexes in the aromatic proton region are also included in Table 2. Only the ¹H NMR spectra of the [(dien)Pt(nucl)]Br₂ and the dinuclear [{(dien)Pt}₂(nucl- H^+)](ClO₄)₃ complexes could be obtained; these are also presented in Table 2. The ¹H NMR spectra of the dinuclear complexes $[(dien)Pt(nucl-H^+)(PtX_3)]$, however, showed broad lines, possibly due to either polymerization involving both N₁ and N₃ sites, besides N_7 of the nucleosides in bonding with Pt(II), or to a metal-metal interaction. The H₈ aromatic protons of guo, ino and xao, shift downfield in the complexes [(dien)Pt(nucl)]Br₂ by 0.3–0.4 ppm, compared to the free ligands. The 60 MHz spectra of the compounds also show the satellites of ¹⁹⁵Pt (33%) around H₈ (coupling constant of about 35 Hz). These are in agreement with an N_{7} -Pt(II) coordination in all the complexes [11-14]. In the N₁,N₇ dinuclear complexes on the other hand, a further downfield shift of the H₂ proton is observed in the ino complexes, and a smaller one for the H_8 proton in the guo complexes (Table 2). Finally, both H_2 and H_8 protons of the N_7 monocoordinated and N_1 -deprotonated complexes are shown upfield compared to the non-deprotonated ones (Table 2).

Experimental

Materials

The nucleosides ino, guo and xao and $AgClO_4$ were purchased from Sigma Chem. Co and used without further purification. K_2PtCl_4 was from Johnson Matthey and Mallory.

Methods

The elemental analysis of Pt and Cl were made by us, as previously described [13, 14] and of C, H, N with a Beckmann elemental analyser. The conductivity measurements were performed in an E365 B conductoscope, Metrohm Ltd., Herisau, Switzerland. The IR spectra were recorded on a Perkin-Elmer model 883 spectrophotometer. The ¹H NMR spectra are obtained on Brucker 200 MHz and Varian T60 spectrometers.

Preparation of the complexes

(i) The complexes $[(dien)Pt(nucl)]Br_2$

0.5 mmol of [(dien)PtBr]Br and 0.5 mmol of the nucleoside were heated at 80 °C for 7-8 h under stirring, in about 20 ml of H₂O. The aqueous solutions were subsequently evaporated to small volumes and left in the refrigerator. In the cases with guo and 9-MeG, a white powder was precipitated after a few hours and was then filtered. It was washed with cold water, acetone and ether and dried over P₂O₅ under vacuum. In the cases with ino and xao an amount of acetone was added to the aqueous solutions, and the precipitate obtained after cooling, was filtered and dried as above. Yield 85–90%.

(ii) The complexes $[(dien)Pt(nucl)](PtX_4)$ and $[(dien)Pt(nucl-H^+)(PtX_3)]$ (X=Cl, Br)

In 25–30 ml of H₂O, 0.2 mmol of the complex $[(\text{dien})\text{Pt}(\text{nucl})]\text{Br}_2$ and 5 mmol of KX (X = Cl, Br) were dissolved. 0.2 mmol of K₂PtCl₄ were then added. The mixing was followed by precipitation of the corresponding salt $[(\text{dien})\text{Pt}(\text{nucl})][\text{PtCl}_4]$ of light pink colour, which can be isolated by filtration at this stage, washing with H₂O, acetone and ether, and drying. To obtain the $[(\text{dien})\text{Pt}(\text{nucl}+\text{H}^+)(\text{PtCl}_3)]$ complexes, the suspensions were allowed to react with stirring for 8 h at 80 °C. During the reaction, the pH falls to acidic values and is kept constant to about 6 by addition of

0.1 M KOH or NaOH. This procedure results in the dissolution of the initial precipitates. Finally the clear solution was evaporated to a small volume and upon cooling, an orange coloured precipitate separated out, which was filtered, washed with ice cold water, acetone and ether, and dried over P_2O_5 in a dessicator under vacuum. Yield 80%.

(iii) The complexes $[(dien)Pt(nucl-H^+)Pt(dien)]-(ClO_4)_3$

0.2 mmol of [(dien)PtBr]Br were allowed to react with 0.39 mmol of AgClO_4 and the resulting AgBr was filtered off by centrifugation. The resulting solution, containing $[(\text{dien})\text{Pt}(\text{H}_2\text{O})](\text{ClO}_4)_2$, was allowed to react with 0.2 mmol of $[(\text{dien})\text{Pt}(\text{nucl})](\text{ClO}_4)_2$ (exchange of Br^- with ClO_4^- , in a similar fashion) by heating for 8 h at 80–90 °C, with stirring, in 20–30 ml of water. The pH of the reaction mixture is kept constant to about 6, with 0.1 M NaOH. At the end of the reaction, the solutions were evaporated to small volumes. To these, acetone was added and the resulting precipitate was separated from the liquid by filtration. The precipitate was washed with acetone and ether, and dried over P_2O_5 in a vacuum dessicator. Yield 50–60%.

References

- 1 S. E. Sherman and S. J. Lippert, Chem. Rev., 87 (1987) 1153.
- 2 J. Reedijk, A. M. J. Fichtinger-Shepman, A. T. van Oosterom and O. van den Putte, *Struct. Bonding*, (Berlin), 67 (1987) 53.
- 3 R. Beyerle-Pfnür, B. Brown, R. Faggiani, B. Lippert and C. J. L. Lock, *Inorg. Chem.*, 24 (1985) 4001.
- 4 J. Arpalahti and P. Lehikoinen, Inorg. Chim. Acta, 159 (1989) 115.
- 5 J. L. van der Veer, H. van der Elst and J. Reedijk, *Inorg. Chem.*, 26 (1987) 1536.
- 6 J. H. J. den Hartog, M. L. Salm and J. Reedijk, *Inorg. Chem.*, 23 (1984) 2001.
- 7 G. Frommer, H. Schöllhorn, U. Thewalt and B. Lippert, Inorg. Chem., 29 (1990) 1417.
- 8 G. Y. H. Chu, S. Mancy, R. E. Duncan and R. S. Tobias, J. Am. Chem. Soc., 100 (1987) 593.
- 9 G. Raudaschl-Sieber, H. Schöllhorn, U. Thewalt and B. Lippert, J. Am. Chem. Soc., 107 (1985) 3591.
- 10 R. M. Izatt, J. J. Christensen and J. H. Rytting, Chem. Rev., 71 (1971) 439.
- 11 P. C. Kong and T. Theophanides, Inorg. Chem., 13 (1974) 1981.
- 12 L. Sindellari, H. Schöllhorn, U. Thewalt, G. Raudaschl-Sieber and B. Lippert, *Inorg. Chim. Acta*, 168 (1990) 27.
- 13 N. Hadjiliadis and T. Theophanides, Inorg. Chim. Acta, 16 (1976) 77.
- 14 G. Pneumatikakis, N. Hadjiliadis and T. Theophanides, Inorg. Chem., 17 (1978) 915.
- 15 R. W. Gellert, B. E. Fisher and R. Bau, J. Am. Chem. Soc., 102 (1980) 7812.
- 16 A. J. Canty and R. S. Tobias, Inorg. Chem., 18 (1979) 413.