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We have previously described a tyrosinase (o-phenol 
monooxygenase) functional model, in which a dicop- 
per(I) complex containing a m-xylyl dinucleating ligand 
XYL (=Ll), [Cu,(Ll)]*+ (l), reacts with molecular 
oxygen, resulting in the hydroxylation of the arene 
group to give [Cu,(Ll-O-)1*+ (4) (Scheme 1). Extensive 
investigations demonstrate that a peroxo intermediate 
[c~*(Lw32)1*+ initially forms, and this attacks the 
aromatic substrate by a process which is electrophilic 
(e.g. N.I.H. shift) by nature [l, 21. Insights into the 
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[c”‘*(L3)1*+ RPY = 6.Me-2-Pyridyl 

Scheme 1. 
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hydroxylation mechanism have in part come from studies 
of either 2- or 5-substituted XYL ligands and their 
complexes [l, 3, 41. The nature of the ligand donor to 
copper(I) in these xylyl dinuclear complexes has been 
observed to be critical in determining whether hy- 
droxylation occurs; the alternative reaction pathway is 
the irreversible oxidation of Cu(1) to hydroxo-Cu(II) 
complexes, i.e. without xylyl hydroxylation. Sorrel1 et 
‘al. [5] found that substitution of the pyridyl donors for 
pyrazolyl or imidazolyl ligands precluded the hydrox- 
ylation reaction. We also wished to examine possible 
steric and/or electronic consequences and O2 reactivity 
when placing a substituent on the pyridyl donor ligand 
of the two bis[Z(2-pyridyl)ethyl]amine (PY2) tridentate 
chelate groups. Here, we describe the chemistry using 
dinucleating ligands having 5-ethyl (L2) and 6-methyl 
(L3) pyridine substitution. 

Ligands L2 and L3 were prepared via the acetic acid 
catalyzed addition (in MeOH) of an excess of the 
appropriate 2-vinylpyridine with m-xylenediamine [6]. 
5-Ethyl-2-methylpyridine was reacted with parafor- 
maldehyde in EtOH affording 5-ethyl-2-hydroxyethyl- 
pyridine and dehydration (by distillation from KOH) 
of this or 6-methyl-2-hydroxyethylpyridine gave the ap- 
propriate 2-vinylpyridines. Dicopper(1) complexes 
[Cu2(L2)12’ (2) and [Cu,(L3)]*+ (3) were synthesized 
by addition of two equivalents of [Cu(CH,CN),]PF, 
in CH,Cl, under argon, precipitation with diethyl 
ether, and recrystallization from CH,Cl&t,O. 
Anal. Calc. for [Cu,(L2)](PF,), * O.SCH,Cl, (2-(PF,),), 
C,,H,,ClCu,F,,N,P,: C, 47.40; H, 5.05; N, 7.45. Found: 
C, 47.73; H, 5.16; N, 7.37%. ‘H NMR (CD,NO,, S): 
1.24 (t, 12H), 2.64 (q, 8H), 3.13 (s, br, 16H), 3.66 (s, 
4H), 5.44 (lH, CH,Cl,), 7.15 (m, lH), 7.25 (d, 2H), 
7.31 (d, 4H), 7.42 (s, IH), 7.78 (d, 4H), 8.36 (s, 4H). 
Calc. for [Cu2(L3)1(PF,)2(3-(PF,)2), GJ%8~2F12W2: 
C, 46.65; H, 4.70; N, 8.16. Found: C, 47.25; H, 4.67; 
N, 8.22%. ‘H NMR (CD,Cl,, S): 2.70 (s, 12H), 3.02-3.20 
(d, br, 16H), 3.46 (s, 4H), 6.81-7.77 (m, 16H). 
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Fig. 1. ORTEP diagram of the dication part of [Cu,(L3)](PF& (3-(PF,),) showing the atom labeling scheme. Selected bond lengths 
(A”) and angles (“) are: Cu. ‘Cu, 8.904; Cul-Nl, 2.160(7); Cul-N2, 1.953(g); Cul-N3, 1.973(8); Cu2-N4, 2.294(7); Cu2-N5, 1.942(7); 
Cu2-N6, 1.961(7); Nl-Cul-N2, 103.7(3); Nl-Cul-N3, 99.3(3); N2-Cul-N3, 152.5(3); N4-Cu2-N5, 101.9(3); N&Cu2-N6, 89.1(3); 
N5-Cu2-N6, 16&O(3). 

X-ray quality crystals of [Cu,(L3)](PF,), (3-(PF,),) 
could be obtained. The structure* of the dication (Fig. 
1) is similar to that found for [Cu,(L1)12’ (1) [2], with 
each copper found in a tricoordinate environment and 
the Cu atoms extended away from each other such 
that Cu. . -Cu =8.904 & bond distances and angles 
around Cul are analogous to that for 1. However, some 
distortions occur for Cu2, such that its coordination 
geometry is very T-shaped, with the N,,-Cu2-N, angle 
of 169.0” as compared to values ranging from 151-153” 
around Cul in this structure or values found in 1. 
Accompanying this variation around Cu2, the Cu2-N4 

a 
amine) bond distance is lengthened by more than 0.1 

compared with values for Cul or those in complex 
l,‘Overall, the presence of 6-methyl groups in 3 does 
not appear to grossly affect the Cu(1) coordination and 
structure, however, the Cu ions do appear to be less 
accessible to a fourth ligand, because of a ‘pocket’ that 
appears to be formed. 

However, the reactions of dioxygen with [Cu,(L2)12+ 
(2) and [Cu2(L3)12+ (3) appear to be greatly affected 
by the pyridine alkyl substituent. [Cu2(L2)12+ (2) readily 
reacts in either CH,Cl, or dimethylformamide (DMF) 
to produce [Cu,(L2-O-)(OH)12+ (5) in high yield. This 
complex has chemical and physical properties closely 
matching those of the well-characterized phenoxo and 

*Triclinic space group Pi with a=11.095(4), b=12.704(4), 
c= 16.118(6) A, a=90.07(3), /3= 101.22(3), y=99.47(3)“, I’= 
2196.7(2) A, Z= 2. A total of 3336 reflections was refined to 
R=0.071 and R,=0.074 (MO KU, h =0.71073 A). 

hydroxo bridged compound 4 [2]. Anal. Calc. for 
[cU,(L2-0 -)@H)l(PF& .0.5Et,O W’F,),), C&a- 

Cu,F,,N,O,,P,: C, 47.83; H, 5.28; N, 7.28. Found: C, 
48.20; H, 5.20; N, 7.70%. IR (Nujol; cm-‘): 3600 (sharp, 
OH), 1600 (C=C, aromatic), 840 (br, PF,). UV-Vis 
(CH,CN; Amax (nm) (E, M-’ cm-‘)): 213 (15 400), 256 
(17400), 377 (3200), 420 (weak sh.) 630 (190). 
peff= 1.4kO.l BM/Cu (solid, 298 K). However, 
P2(W12+ (3) d oes not react with 0, under any 
conditions. In fact, the solid material or solutions of 
3 can be handled in air for long periods. 

Cyclic voltammetric experiments for l-3 were carried 
out in order to help understand the oxygenation be- 
havior, since the ease of oxidation of Cu(I) by 0, 
usually correlates with the Cu(II)/Cu(I) redox potential. 
As previously found for 1 [7], [Cu2(L2)12+ (2) also 
exhibits a quasireversible electrochemical process in 
DMF with E,,2 = + 0.29 V versus Ag/AgCl and A& = 320 
mV (0.1 M n-Bu,NPF,, where E,,= +0.52 V for Fc/ 
Fc’). This is the only redox process observed over the 
potential range + 0.9 to -0.2 V, indicating that the 
two separate metal associated redox processes in the 
dinuclear complex occur at essentially the same po- 
tential. The half-wave potential compares well with that 
observed for [Cu2(L1)12+ (l), where E,,,= + 0.31 versus 
Ag/AgCl; the slightly lower re,dox potential for 2 is 
consistent with the expected increased stabilization of 
Cu(I1) relative to Cu(I) in a system possessing a more 
electron donating ligand (i.e. due to the Et substituent). 
A cyclic voltammogram of [Cu,(L3)]*+ (3) is not well 
behaved. Single oxidation and reduction processes both 



occur and E,,, could be estimated to be N +0.39 V, 
however the peak to peak separation is N 600 mV. One 
can conclude that there is a severe kinetic barrier to 
facile electron transfer in 3, and the 6-methylpyridyl 
substituent clearly affects the redox chemistry and 0, 
reactivity with this dicopper(1) complex. As provided 
by the methyl substituents, a non-polar environment is 
well known to increase copper ion redox potentials [8] 
and Sorrel1 and Jameson [9] have specifically shown 
that to be the case in sterically hindered CuN, complexes 
of tripod ligands (with t-butyl groups). 

From the study reported here, it is apparent that 
pyridyl donor substituents in the PY2 chelating tri- 
dentate ligand employed in these xylyl dinucleating 
ligands can greatly affect the chemistry. Due to the 
more positive redox potential for copper ion and steric 
effects (perhaps manifested in a dinuclear Cu-O,-Cu 
intermediate), the 6-methyl substituent in [CQ(L~)]~+ 
(3) shuts down the 0, reactivity of this tricoordinate 
Cu (I) complex. 
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