Short Communication

A polymeric silver(I) complex containing triply carboxylato-O, O'-bridged dinuclear cores, [{Ag₄(Me₃NCH₂CO₂)₆]_n](ClO₄)_{4n}

Thomas C. W. Mak^{*}, Wai-Hing Yip and Xiao-Ming Chen

Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories (Hong Kong)

(Received April 29, 1992; revised July 28, 1992)

Abstract

The title complex consists of discrete perchlorate ions and stepwise one-dimensional cationic chains based on a centrosymmetric tetranuclear sub-unit in which two independent silver(I) atoms are triply bridged by syn-syn carboxylato-O, O' groups of three Me₃N⁺CH₂CO₂⁻ ligands to form a dinuclear core.

Introduction

Most structurally characterized silver(I) carboxylates are composed of either discrete dimers or polymeric systems constructed by the linkage of dimeric sub-units in which each pair of adjacent metal atoms is doubly bridged by coplanar syn-syn μ -carboxylato-O,O' groups [1, 2]. These dimeric structures, formulated as $[Ag_2(carboxylato-O,O')_2]_n$ $(n = 1, 2, or \infty)$, have been classified into four principal types (see Fig. 1 in ref. 4). Only three exceptions have been reported hitherto. The first is a one-dimensional polymeric arrangement of linear O-Ag-O bonds as found in silver(I) (4-chloro-2-methylphenoxy)acetate [3], where the bridging carboxylato group acts in the syn-anti mode. The second is a one-dimensional polymeric structure in which each pair of adjacent metal atoms is bridged by a single carboxylato-0,0' found syn-syn group as in $[{Ag(C_5H_5N^+CH_2CO_2^-)(NO_3)}_n]$ [4], and the third is composed of a zigzag chain featuring an uncommon [{Ag₂(carboxylato-O, O')(carboxylato- μ -1,1-O)] sixmembered ring found in as $[Ag\{C_5H_4 (COO)N^+CH_2CO_2^-]_n \cdot nH_2O$ [5].

As betaines are structural analogues of the corresponding carboxylate anions, we have taken advantage of their overall charge neutrality to prepare a variety of water-soluble silver(I) betaine complexes [2, 4, 5] and mercury(II) chloride betaine adducts [6]. All these silver(I) complexes were prepared by reacting a silver(I) salt with the corresponding betaine ligand. The use of excess betaine had no effect on the 1:1 metal-ligand molar ratio in the resulting complex, although we have previously established a 1:4 copper(II) betaine complex, [Cu(Me₃NCH₂CO₂)₄](NO₃)₂, in which the Cu(II) atom is uncommonly eight-coordinated [7]. Repeated attempts employing various betaines (in excess) and counter anions eventually led to the preparation of the title silver(I) complex with a Ag(I)-betaine molar ratio of 2:3, namely [{Ag₄(Me₃NCH₂CO₂)₆]_n](ClO₄)_{4n}.

Experimental

The title complex was simply prepared by mixing $AgClO_4$ (0.541 g, 2.61 mmol) and excess betaine $(Me_3N^+CH_2CO_2^-; IUPAC name: trimethylammon$ ioacetate) monohydrate (0.706 g, 5.52 mmol) in distilled water (10 cm³) with stirring. After the resulting colourless solution was allowed to stand at room temperature for about three weeks, colourless needleshaped crystals suitable for X-ray work were obtained.

Crystal data: Ag₄(C₃H₉NCH₂CO₂)₆·4(ClO₄), $M_r = 1532.8$, monoclinic, space group P_{2_1}/c (No. 14), a = 5.9341(4), b = 17.501(2), c = 25.919(4) Å, $\beta = 92.08(1)^\circ$, U = 2690.0(5) Å³, Z = 2, F(000) = 1536, T = 295 K, $D_{meas} = 1.892$ g cm⁻³ (CCl₄/BrCH₂CH₂Br), $D_{calc} = 1.891$ g cm⁻³, μ (Mo K α) = 17.1 cm⁻¹.

Intensity data were measured on a Nicolet R3m/V diffractometer with Mo K α radiation ($\lambda = 0.71073$) using the ω -scan technique and corrected for absorption by fitting φ -scan data to a pseudo-ellipsoid [8]. The structure was solved by Patterson superposition. Except for the oxygen atoms in the two-fold disordered perchlorate groups, all non-hydrogen atoms were refined anisotropically, and all H atoms were generated geometrically (C-H=0.96 Å) and included in structure-factor calculations with assigned isotropic thermal parameters. Convergence was reached at $R_F = 0.070$ and $R_{wF^2} = 0.097$ for 3858 observed data ($I > 4\sigma(I)$, $2\theta_{max} = 50^{\circ}$) using the weighting scheme $[\sigma^{2}(|F_{0}|) + 0.0004|F_{0}|^{2}]^{-1}$. Computations were performed using the SHELXTL-PLUS program package [9]. Analytic expressions of neutralatomic scattering factors were used, and anomalous dispersion corrections were incorporated [10]. The final positional parameters and equivalent isotropic thermal parameters of the non-hydrogen atoms are listed in

^{*}Author to whom correspondence should be addressed.

Table 1, and selected bond lengths and angles in Table 2.

Results and discussion

The title complex comprises discrete perchlorate anions and stepwise one-dimensional cationic chains based on tetranuclear sub-units as shown in Fig. 1. In this sub-unit, two independent silver(I) atoms are *triply*

TABLE 1. Atomic coordinates ($\times 10^4$) and equivalent isotropic thermal parameters ($\mathring{A}^2 \times 10^3$)

	x	у	z	U_{eq}^{a}
Ag(1)	- 545(1)	1178(1)	528(1)	48(1)
Ag(2)	3582(1)	350(1)	560(1)	44(1)
O(1)	296(9)	1183(3)	-336(2)	48(2)
O(2)	2846(8)	253(3)	-307(2)	39(2)
C(1)	1767(11)	795(4)	-526(2)	31(2)
C(2)	2415(12)	974(4)	- 1077(2)	34(2)
N(1)	3798(9)	1693(3)	-1110(2)	32(2)
C(3)	2432(16)	2385(5)	- 1008(4)	68(4)
C(4)	5750(14)	1659(5)	- 738(3)	62(3)
C(5)	4710(16)	1738(5)	-1648(3)	61(3)
O(3)	- 270(10)	666(3)	1360(2)	57(2)
O(4)	3228(11)	221(3)	1412(2)	62(2)
C(6)	1484(14)	497(4)	1589(3)	39(2)
C(7)	1438(12)	647(5)	2169(3)	45(3)
N(2)	3631(10)	815(4)	2451(2)	45(2)
C(8)	4797(17)	1465(5)	2206(4)	75(4)
C(9)	5162(16)	130(5)	2479(4)	66(3)
C(10)	3068(17)	1007(7)	2993(3)	89(4)
O(5)	2471(9)	2202(3)	663(3)	63(2)
O(6)	5629(9)	1537(3)	575(2)	56(2)
C(11)	4545(13)	2139(4)	641(3)	41(2)
C(12)	6121(12)	2842(4)	686(3)	44(2)
N(3)	4998(10)	3600(3)	731(2)	37(2)
C(13)	6875(14)	4183(4)	766(4)	60(3)
C(14)	3682(15)	3663(5)	1217(3)	54(3)
C(15)	3514(15)	3773(5)	272(3)	58(3)
Cl(1)	- 636(4)	3272(1)	2325(1)	65(1)
O(7)	1017(23)	2706(8)	2292(7)	120
O(8)	-2973(16)	3067(9)	2231(7)	120
O(9)	- 574(29)	3674(9)	2822(4)	120
O(10)	- 300(29)	3911(7)	1970(5)	120
O(7′)	- 408(28)	2656(7)	2701(5)	120
O(8′)	- 412(29)	2840(8)	1834(4)	120
O(9′)	1100(22)	3821(8)	2335(7)	120
O(10')	-2951(16)	3508(9)	2301(7)	120
Cl(2)	1635(4)	6051(1)	921(1)	57(1)
O(11)	299(26)	5401(7)	1018(7)	120
O(12)	3988(16)	5845(10)	851(7)	120
O(13)	886(28)	6485(10)	472(5)	120
O(14)	1713(39)	6570(11)	1357(6)	120
O(11')	- 725(16)	5844(10)	869(7)	120
O(12')	1907(38)	6512(12)	1382(6)	120
O(13')	3345(23)	5520(8)	845(7)	120
O(14′)	1801(29)	6628(9)	501(6)	120

^aEquivalent isotropic U defined as one third of the trace of the orthogonalized U_{ij} tensor.

TABLE 2. Selected bond lengths (Å) and bond angles (°)

Ag(1)Ag(2)	2.845(1)	Ag(1)-O(1)	2.312(5)
Ag(1)-O(3)	2.336(5)	Ag(1)-O(5)	2.548(5)
Ag(1)–O(6d)	2.363(6)	Ag(2)-O(2)	2.280(5)
Ag(2)–O(4)	2.240(5)	Ag(2)–O(6)	2.406(5)
Ag(2)–O(2a)	2.476(5)		
O(1)-Ag(1)-O(3)	152.3(2)	O(1)-Ag(1)-O(5)	87.4(2)
O(3) - Ag(1) - O(5)	96.8(2)	O(1)-Ag(1)-O(6d)	106.9(2)
O(3)Ag(1)O(6d)	95.1(2)	O(5)-Ag(1)-O(6d)	118.5(2)
O(2) - Ag(2) - O(4)	160.7(2)	O(2)Ag(2)O(6)	99.2(2)
O(4) - Ag(2) - O(6)	97.8(2)	O(2) - Ag(2) - O(2a)	81.0(2)
O(4) - Ag(2) - O(2a)	109.2(2)	O(6) - Ag(2) - O(2a)	86.3(2)
Ag(1)-O(1)-C(1)	124.8(4)	Ag(2)-O(2)-C(1)	117.5(4)
Ag(2)-O(2)-Ag(2a)	99.0(2)	C(1)O(2)Ag(2a)	128.6(4)
Ag(1) - O(3) - C(6)	125.0(5)	Ag(2)-O(4)-C(6)	115.7(5)
Ag(1)-O(5)-C(11)	128.7(5)	Ag(2)-O(6)-C(11)	117.9(5)
Ag(2) - O(6) - Ag(1b)	104.7(2)	C(11)-O(6)-Ag(1b)	137.1(5)
O(1)C(1)	1.224(8)	O(2)-C(1)	1.266(8)
O(3) - C(6)	1.217(9)	O(4) - C(6)	1.245(10)
O(5)-C(11)	1.239(9)	O(6)-C(11)	1.249(9)
O(1)-C(1)-O(2)	126.2(6)	O(3)C(6)O(4)	128.5(7)
O(5)-C(11)-O(6)	126.8(7)		. /
	• • •		

Symmetry codes: (a) 1-x, -y, -z; (b) 1+x, y, z; (c) -x, -y, -z; (d) 2-x, -y, -z; (e) -1+x, y, z.

Fig. 1. Perspective view showing the coordination geometry about the metal atoms in $[{Ag_4(Me_3NCH_2CO_2)_6}_n](ClO_4)_{4n}$ and the atom numbering scheme. Symmetry codes: (a) 1-x, -y, -z; (b) 1+x, y, z; (c) -x, -y, -z; (d) -1+x, y, z; (e) 2-x, -y, -z.

bridged by syn-syn carboxylato-O,O' groups of three betaine ligands into a dinuclear core with an intra-core metal-metal separation of Ag \cdots Ag = 2.845(1) Å, which is comparable to both the intra-dimeric separation found in a number of silver(I) carboxylates and that in metallic silver (2.89 Å). The three carboxylato groups are arranged in a T-shaped configuration: two approximately coplanar carboxylato-O,O' groups bridge two metal atoms in a fashion similar to that in the dimeric structure of silver(I) carboxylates [1, 2] and the third, being nearly perpendicular to the former plane, can be considered as the replacement of two *syn*-related axial ligands (L) in a modified type \mathbf{D}_2 dimeric structure (Fig. 2) as found in [{Ag₂(C₅H₅N⁺CH₂CH₂CO₂⁻)₂(NO₃)₂]_n] (L=O-NO₂) [2c]. In the present core the metal atoms are each in a highly distorted tetrahedral environment with Ag–O bonds ranging from 2.240(5) to 2.548(5) Å and O–Ag–O bond angles from 86.3(2) to 160.7(2)°. Large distortion from regular coordination geometry has also been found in a trigonally coordinated Ag(I) carboxylate [4].

The three independent betaine ligands in the present complex function in different ways. Although all act as *syn-syn* bridging ligands to form the dinuclear core, one of them also connects the two cores via metal-carboxylate linkages of the type Ag(2)-O(2a)(2.476(5) Å) into a tetranuclear sub-unit, generating a centrosymmetrical Ag_2O_2 rhomb as found in the dimer-based polymeric silver(I) carboxylates; a second betaine further links the sub-units by metal-carboxylate linkages (Ag(1)-O(6d) 2.363(3) Å) into a stepwise onedimensional cationic chain running parallel to the *a*axis in the unit cell.

The triple carboxylato-O, O' bridges in the dinuclear core make the structure of the title complex distinct from those of all the other structurally characterized silver(I) carboxylates, for which bis(carboxylato-O, O')bridged dimeric species predominate. Hitherto there is no record of polymeric metal complexes based on similar tetranuclear sub-units in the literature. Although a novel triply (carboxylato-O, O')-bridged linear polymeric complex, [Mn(Me₃NCH₂CO₂)₃]_n ·nMnCl₄, has recently been reported [10], the C₃-related triple car-

(c) Modified type D₂.

(d) Triply bridged dinuclear cores in the tetranuclear sub-unit.

Fig. 2. Triply carboxylato-O, O'-bridged dinuclear cores in the tetranuclear sub-unit of $[{Ag_4(Me_3NCH_2CO_2)_6}_n](ClO_4)_{4n}$ (d) and the related bis(carboxylato-O, O')-bridged dimeric structures (a)-(c).

boxylato-O,O' bridges in it function in an uncommon skew-skew mode that is very different from the Tshaped configuration found in the title complex.

Supplementary material

Additional material comprising the remaining bond lengths and angles, thermal parameters, H-atom coordinates, and observed and calculated structure-factor amplitudes (22 pages) are available from author T.C.W.M. on request.

Acknowledgement

This work is supported by Hong Kong UPGC Earmarked Research Grant A/C No. 221600010.

References

- (a) T. C. W. Mak, W. H. Yip, C. H. L. Kennard, G. Smith and E. J. O'Reilly, Aust. J. Chem., 39 (1986) 541; (b) B. T. Usubaliev and E. M. Mameov, Zh. Strukt. Khim., 22 (1981) 98; (c) M. E. Kamwaya, E. Papavinasam, S. G. Teoh and R. K. Rajaram, Acta Crystallogr., Sect. C, 40 (1984) 1381; (d) M. Hedrich and H. Hartl, Acta Crystallogr., Sect. C, 39 (1983) 553; (e) A. E. Blakeslee and J. L. Hoard, J. Am. Chem. Soc., 78 (1956) 3029; (f) R. G. Griffin, J. D. Ellett, M. Mehring, J. G. Bullitt and J. S. Waugh, J. Chem. Phys, 57 (1972) 2147; (g) J. K. M. Rao and M. A. Viswamitra, Acta Crystallogr., Sect. B, 28 (1972) 1484; (h) P. Coggon and A. T. McPhail, J. Chem. Soc., Chem. Commun., (1972) 91; (i) T. C. W. Mak, W. H. Yip, C. H. L. Kennard, G. Smith and E. J. O'Reilly, J. Chem. Soc., Dalton Trans., (1988) 2353.
- 2 (a) X.-M. Chen and T. C. W. Mak, J. Chem. Soc., Dalton Trans., (1991) 1219; (b) (1991) 3253; (c) W.-Y. Huang, L. Lü, X.-M. Chen and T. C. W. Mak, Polyhedron, 10 (1991) 2687.
- 3 G. Smith, C. H. L. Kennard and T. C. W. Mak, Z. Kristallogr., 184 (1988) 275.
- 4 X.-M. Chen and T. C. W. Mak, Polyhedron, 10 (1991) 1723.
- 5 X.-M. Chen and T. C. W. Mak, Aust. J. Chem., 44 (1991) 1783.
- 6 X.-M. Chen and T. C. W. Mak, J. Chem. Soc., Dalton Trans., (1991) 3253.
- 7 X.-M. Chen and T. C. W. Mak, Polyhedron, 10 (1991) 723.
- 8 G. Kofmann and R. Huber, Acta Crystallogr., Sect. A, 24 (1968) 348.
- 9 G. M. Sheldrick, (a) in D. Sayre (ed.), Computational Crystallography, Oxford University Press, New York, 1982, p. 506;
 (b) in G. M. Sheldrick, C. Krüger and R. Goddard, (eds), Crystallographic Computing 3: Data Collection, Structure Determination, Proteins, and Databases, Oxford University Press, New York, 1985, p. 175.
- 10 International Tables for X-ray Crystallography, Vol. 4, Kynoch, Birmingham, UK, 1974, pp. 55, 99, 149.
- 11 X.-M. Chen and T. C. W. Mak, Inorg. Chim. Acta, 189 (1991) 3.