Dinuclear complexes with bridging functionalized alkylidene ligands: synthesis of the phosphonium $[Fe_2Cp_2(CO)_2(\mu-CO)\{\mu-C(CN)PR_3\}]SO_3CF_3$ and of the phosphinoalkylidene $[Fe_2Cp_2(CO)_2(\mu-CO)\{\mu-C(CN)PH_2\}]$

Marco Bassi, Lucia Carlucci and Valerio Zanotti*

Dipartimento di Chimica Fisica ed Inorganica dell'Università, viale Risorgimento 4, 40136 Bologna (Italy)

(Received June 18, 1992)

Abstract

Replacement of SMe₂ by phosphines PR₃ (PR₃=PPh₃, PMePh₂, PMe₂Ph, PMe₃, P(CH₂Ph)₃, PPh₂CH₂PPh₂, P(NEt₂)₃) in the sulfonium [Fe₂Cp₂(CO)₂(μ -CO){ μ -C(CN)SMe₂}]SO₃CF₃ (1) results in the formation of the novel phosphonium salts [Fe₂Cp₂(CO)₂(μ -CO){ μ -C(CN)PR₃}]SO₃CF₃. The corresponding reaction of 1 with PH₃ affords a mixture of [Fe₂Cp₂(CO)₂(μ -CO){ μ -C(CN)PH₃}]SO₃CF₃ (3) and the μ -phosphinoalkylidene [Fe₂Cp₂(CO)₂(μ -CO){ μ -C(CN)PH₃}] (4). Conversion of 3 to 4 is achieved by deprotonating with NEt₃ and completely reversed upon treatment with HSO₃CF₃. The phosphonium and μ -phosphinoalkylidene complexes have been characterized on the basis of their IR, ³¹P, ¹H and ¹³C NMR spectra.

Introduction

We have recently reported on the synthesis of new μ -phosphinoalkylidenes [Fe₂Cp₂(CO)₂(μ -CO){ μ -C(CN)PR₂}] (PR₂=PEt₂, PHCy, PHPh) [1] obtained by reacting the appropriate secondary or primary phosphine with the sulfonium salt [Fe₂Cp₂(CO)₂(μ -CO){ μ -C(CN)SMe₂}]SO₃CF₃ (1) [2]. These reactions proceed via the deprotonation of phosphonium intermediates [Fe₂Cp₂(CO)₂(μ -CO){ μ -C(CN)HPR₂}]⁺ which have been detected or isolated (in the case of the reaction with PHEt₂) from the reaction mixture.

Herein we report on the reactions of 1 with tertiary phosphines yielding stable phosphonium derivatives of the type $[Fe_2Cp_2(CO)_2(\mu-CO){\mu-C(CN)PR_3}]SO_3CF_3$. The reaction of 1 with PH₃ will also be described and discussed.

Results and discussion

Treatment of a CH₃CN solution of $[Fe_2Cp_2(CO)_2(\mu-CO){\mu-C(CN)SMe_2}]SO_3CF_3$ (1) with 1 equiv. of a tertiary phosphine led to the replacement of the SMe₂ molecule by PR₃ as shown in Scheme 1.

Compounds 2a-g were isolated as moderately air stable red crystalline solids in 60-80% yield. Their IR

spectra display a weak ν (CN) band at about 2156 cm⁻¹, and a strong-weak-medium $\nu(CO)$ band pattern (e.g. **2b**: 2003, 1974, 1833 cm⁻¹) which is common to all of the related cyanoalkylidenes $[Fe_2Cp_2(CO)_2(\mu-CO)]{\mu-CO}$ C(CN)X] (X = SR [3], OR [4], NR₂ [5], PR₂ [1]) and consistent with a cis configuration (Cp ligands cis to each other). It should be noted that the CO frequencies of the phosphonium 2a-g are at lower wavenumbers compared to those of the parent sulfonium 1 (2013, 1981, 1835 cm⁻¹ in CH₃CN) in agreement with better electron donor properties of PR₃ with respect to SMe₂. Both ¹³C and ¹H NMR spectra of 2a-g show one single resonance for the Cp ligands according with the presence of one single *cis*-isomer. Finally the presence of the bridging alkylidene carbon is clearly indicated by the occurrence of a doublet in the ¹³C NMR spectra (e.g. 2c: $\delta = 81.2$, J(PC) = 41 Hz) which is comparable to the value reported for the μ -carbon atom of its sulfonium precursor 1 ($\delta = 84.5$).

Scheme 1.

^{*}Author to whom correspondence should be addressed.

Only a few other dinuclear μ -phosphoniumalkylidenes known. Examples include the complexes are $[Fe_2Cp_2(CO)_2(\mu-CO){\mu-C(X)PR_3}]^+$ (X = H,Me; $PR_3 = PBu^n_3$, PPh_3) [6] and $[MPtCp(CO)_2(PR_3){\mu C(PR_3)C_6H_4Me-4\}]^+$ (PR₃ = PMe₃, PMe₂Ph; M = Mn, Re) [7] which have been obtained by addition of tertiary phosphines to the μ -C carbon of the cations $[Fe_2Cp_2(CO)_2(\mu-CO)(\mu-CX)]^+$ and [MPtCp(CO)₂- $(PR_3)(\mu$ -CC₆H₄Me-4)]⁺, respectively. Thus PR₃ addition to electrophilic μ -alkylidyne carbons, or to μ -C exhibiting pseudo-alkylidyne character as in 1, may provide a general entry into the chemistry of bridging phosphonium-alkylidene complexes. However it should be noted that the bridging carbynes $[Fe_2Cp_2(CO)_2(\mu CO((\mu-CSR))^+$ have been reported to react with PR_3 to form the CO substituted derivatives $[Fe_2Cp_2(PR_3)(CO)(\mu-CO)(\mu-CX)]^+$ [8].

In order to compare the reactivity of the phosphonium **2a-g** with that of the parent sulfonium **1**, the complex **2a** has been reacted with several nucleophiles including NaBH₄, NBut₄CN and piperidine which are known to react with **1** yielding the corresponding cyanoalkylidenes $[Fe_2Cp_2(CO)_2(\mu-CO)\{\mu-C(CN)X\}]$ (X=H, CN, N(C₅H₁₀)) [5]. In all the cases examined treatment of **2a** with the above mentioned nucleophiles in CH₃CN at room temperature resulted in decomposition and $[FeCp(CO)_2]_2$ was the only identified product.

Compounds 2a-g are more stable than the related phosphonium complexes $[Fe_2Cp_2(CO)_2(\mu-CO){\mu-CO}]$ $C(CN)PHR_2$ ⁺ and $[Fe_2Cp_2(CO)_2(\mu-CO){\mu-C(CN)}$ - PH_2R ⁺ [1] probably because these latter compounds easily undergo deprotonation at the phosphorus atom. In order to better understanding the influence of phosphines containing P-H bonds upon the stability of the phosphonium complexes we decided to investigate the reaction of 1 with PH₃. When phosphorous trihydride (PH_3) was slowly bubbled through a solution of 1 in CH₃CN for about 2 h the color of the mixture turned bright red. The IR spectrum of the reaction mixture exhibited two sets of absorption at 2166w, 2005s, 1828m and 2143w, 1989s, 1957w, 1798m cm⁻¹ attributable phosphonium the $[Fe_2Cp_2(CO)_2(\mu-CO){\mu-CO}]$ to $C(CN)PH_3]^+$ (3) and to the phosphinocarbene $[Fe_2Cp_2(CO)_2(\mu-CO)\{\mu-C(CN)PH_2\}$ (4), respectively. As analogously observed in the case of $[Fe_2Cp_2(CO)_2(\mu$ phosphonium CO { μ -C(CN)PH₂Ph}]⁺ [1], the $[Fe_2Cp_2(CO)_2(\mu-CO)\{\mu-C(CN)PH_3\}]^+$ (3) underwent partial deprotonation, under the reaction conditions. However, even in the presence of a large excess of PH₃ the deprotonation was not complete. In order to obtain an almost quantitative conversion of 3 to 4, NEt₃ was added to the reaction mixture. Filtration through an alumina pad and crystallization from CH₂Cl₂/npentane gave 4 in 41% yield. Deprotonation of the P atom was reversed upon treatment with HSO₃CF₃. Compound 3 was conveniently prepared by treatment of 4 with HSO₃CF₃, however any attempts to obtain pure crystalline samples of 3 failed. The IR spectrum of 4, in CH₂Cl₂, shows ν (CO) bands at 1993, 1963, 1799 and a ν (CN) absorption at 2143 cm⁻¹. In the ¹H NMR spectrum of 4 a doublet for the PH_2 protons is observed at $\delta = 5.23$ with J(PH) = 212 Hz which is strictly comparable with the P-H coupling constants reported the related phosphinoalkylidene complexes for $[Fe_2Cp_2(CO)_2(\mu-CO){\mu-C(CN)PHCy}]$ (J(PH) = 198) $[Fe_2Cp_2(CO)_2(\mu-CO){\mu-C(CN)PHPh}]$ and Hz) (J(PH) = 204 Hz) [1]. The ¹³C NMR spectrum of 4 exhibits a doublet for the μ -alkylidene carbon at $\delta = 120.4$ (J(PC) = 64 Hz) which is in agreement with the values reported for the corresponding μ -carbon atoms in related phosphinoalkylidene complexes (e.g. δ 120.1, J(PC) = 62 Hz for $[Fe_2Cp_2(CO)_2(\mu-CO)]{\mu-CO}$ C(CN)PEt₂] [1]). Moreover two signals of different intensities (approximately 9:1 ratio) are observed in the Cp region (at 92.0 and 91.9, respectively) although only a single peak for Cp appears in the ¹H NMR spectrum ($\delta = 4.95$) suggesting the presence of a mixture of isomers. These are likely the two cis-isomers since the trans-isomer is expected to give rise to two equally intense Cp resonances. The ³¹P NMR of 4 (CDCl₃) also indicates the presence of two isomers since two resonances of different intensities are shown at $\delta = 64.0$ (main isomer) and 61.4. The *cis*-isomer bearing the CN group on the Cp side is presumably the most abundant since, for this class of compounds, it has been observed that isomeric distribution is determined by steric hindrance of the substituents of the μ -alkylidene carbon [5, 9].

Experimental

All reactions were routinely carried out under nitrogen by standard Schlenk techniques. Solvents were distilled immediately before use under nitrogen from appropriate drying agents. IR spectra were recorded on a Perkin-Elmer 983-G. NMR spectra were recorded on a Varian Gemini 200 spectrometer. Elemental analyses were determined by the Pascher Microanalytical Laboratorium (Remagen, Germany). The compound $[Fe_2Cp_2(CO)_2(\mu-CO){\mu-C(CN)SMe_2}]SO_3CF_3$ (1) was prepared by a published method [2].

Synthesis of $[Fe_2Cp_2(CO)_2(\mu-CO)\{\mu-CO\}$

$C(CN)PPh_3$]SO₃CF₃ (2a)

To a solution of 1 (0.23 g, 0.40 mmol) in CH₃CN (15 ml) was added PPh₃ (0.13 g, 0.51 mmol). The mixture was stirred for 5 min and evaporated to dryness under vacuum. The red oily residue was washed with n-pentane (3×5 ml) and crystallized from CH₂Cl₂/n-

pentane mixture at -20 °C yielding red crystals of **2a** (0.21 mg, 69%). *Anal.* Found: C, 53.0; H, 3.4. Calc. for C₃₄H₂₅F₃Fe₂NO₆PS: C, 52.67; H, 3.25%. IR (cm⁻¹, CH₂Cl₂): ν =2152w (CN); 2012s, 1982w, 1828m (CO). ¹H NMR (CD₃COCD₃): δ =8.21-7.83 (m, 15H, Ph), 5.68 (s, 10H, Cp). ¹³C NMR (CD₃COCD₃): δ =255.8 (μ -CO), 209.7 (d, *J*(PC)=5.5 Hz, CO), [136.5 (d, *J*(PC)=8.8 Hz), 135.7 (d, *J*(PC)=2.0 Hz), 130.8 (d, *J*(PC)=11.9 Hz), 124.7 (d, *J*(PC)=83.7 Hz) Ph], 94.9 (Cp).

Synthesis of $[Fe_2Cp_2(CO)_2(\mu-CO)\{\mu-C(CN)X\}]SO_3CF_3$ (X = PMePh₂ (2b), PMe₂Ph (2c), PMe₃ (2d), P(CH₂Ph)₃ (2e), PPh₂CH₂PPh₂ (2f), P(NEt₂)₃ (2g)

These complexes were obtained by the procedure described for the synthesis of 2a.

2b. Yield 70%. *Anal.* Found: C, 48.6; H, 3.3. Calc. for $C_{29}H_{23}F_3Fe_2NO_6PS$: C, 48.83; H, 3.25%. IR (cm⁻¹, CH₂Cl₂): $\nu = 2157w$ (CN); 2003s, 1974w, 1833m (CO). ¹H NMR (CD₂Cl₂, 200 MHz): $\delta = 8.00-7.60$ (m, 10H, Ph), 4.93 (s, 10H, Cp), 1.90 (d, *J*(PH)=13 Hz, 3H, Me). ¹³C NMR (CD₂Cl₂): $\delta = 211.1$ (CO), [135.7, 132.9 (d, *J*(PC)=8 Hz), 131.2 (d, *J*(PC)=11 Hz), 136.9 (d, *J*(PC)=40 Hz) Ph], 94.0 (Cp), 13.1 (d, *J*(PC)=62 Hz, Me). ³¹P{¹H} NMR (CD₂Cl₂): $\delta = 46.8$.

2c. Yield 81%. Anal. Found: C, 44.2; H, 3.7. Calc. for $C_{24}H_{21}F_3Fe_2NO_6PS$: C, 44.27; H, 3.25%. IR (cm⁻¹, CH₃CN): $\nu = 2157w$ (CN); 2001s, 1968w, 1828m (CO). ¹H NMR (CD₃CN): $\delta = 8.11-7.80$ (m, 5H, Ph), 5.13 (s, 10H, Cp), 2.28 (d, J(PH) = 12 Hz, 6H, Me). ¹³C NMR (CD₃CN): $\delta = 254.6$ (μ -CO), 210.0 (d, J(PC) = 6 Hz, CO), [134.1 (d, J(PC) = 2.5 Hz), 130.8 (d, J(PC) = 8.5 Hz), 129.5 (J(PC) = 11.5 Hz), 126.3 (J(PC) = 81 Hz) Ph], 92.6 (Cp), 81.4 (d, J(PC) = 41 Hz, μ -C), 10.9 (d, J(PC) = 58 Hz, Me).

2d. Yield 56%. *Anal.* Found: C, 37.9; H, 3.4. Calc. for $C_{19}H_{19}F_3Fe_2NO_6PS$: C, 38.74; H, 3.25%. IR (cm⁻¹, CH₃CN): ν =2156w (CN); 2001s, 1969w, 1828m (CO). ¹H NMR (CD₃CN): ν =5.34 (s, 10H, Cp), 2.08 (d, J(PH) = 12.6 Hz, 9H, Me). ¹³C NMR (CD₃CN): δ =255.1 (μ -CO), 210.1 (d, J(PC) = 6 Hz, CO), 130.0 (CN), 92.7 (Cp), 79.2 (d, J(PC) = 44 Hz, μ -C), 12.7 (d, J(PC) = 57 Hz, Me).

2e. Compound **2e** was crystallized from CH₃CN layered with Et₂O. Yield 74%. *Anal.* Found: C, 53.9; H, 3.8. Calc. for C₃₇H₃₁F₃Fe₂NO₆PS: C, 54.37; H, 3.82%. IR (cm⁻¹, CH₂Cl₂): ν =2152w (CN); 1998s, 1969w, 1834m (CO). ¹H NMR (CD₃CN): δ =7.50–7.15 (m, 15H, Ph), 5.15 (s, 10H, Cp), 3.61 (d, *J*(PH)=13 Hz, 6H, CH₂Ph). ¹³C NMR (CD₃CN): δ =253.5 (μ -CO), 211.3 (CO), 131.0, 129.9, 129.0 (Ph), 124.5 (CN), 93.2 (Cp), 75.2 (d, *J*(PC)=22 Hz, μ -C), 32.0 (d, *J*(PC)=44 Hz, CH₂Ph). ³¹P{¹H} NMR (CDCl₃): δ =49.9.

2f. Compound **2f** was crystallized from CH₃CN layered with Et₂O. Yield 81%. *Anal.* Found: C, 54.5; H, 4.0. Calc. for C₄₁H₃₂F₃Fe₂NO₆P₂S: C, 54.87; H, 3.59%. IR (cm⁻¹, CH₃CN): ν =2155w (CN); 1996s, 1963w, 1829m (CO). ¹H NMR (CD₂Cl₂): δ =8.06–6.89 (m, 20H, Ph), 4.98 (s, 10H, Cp), 2.90 (d, *J*(PH)=12.8 Hz, 2H, CH₂). ³¹P{¹H} NMR (CDCl₃): δ =51.0 (d, *J*(PP)=69 Hz), -24.4 (d, *J*(PP)=69 Hz).

2g. Yield 55%. *Anal.* Found: C, 44.6; H, 5.1. Calc. for $C_{28}H_{40}F_3Fe_2N_4O_6PS$: C, 44.23; H, 5.30%. IR (cm⁻¹, CH₂Cl₂): $\nu = 2147w$ (CN); 2002s, 1977w, 1827m (CO). ¹H NMR (CDCl₃): $\delta = 5.31$ (s, 10H, Cp), 3.3 (m, br, 12H, CH₂CH₃), 1.3 (m, br, 18H, CH₂CH₃). ¹³C NMR (CDCl₃): $\delta = 253.8 (\mu$ -CO), 211.8 (d, *J*(PC) = 6 Hz, CO), 132.9 (CN), 94.5 (Cp), 85.7 (d, *J*(PC) = 88 Hz, μ -C), 41.7 (CH₂CH₃), 13.3 (CH₂CH₃).

Synthesis of $[Fe_2Cp_2(CO)_2(\mu-CO)\{\mu-C(CN)PH_2\}]$ (4)

Through a stirred solution of 1 (0.37 g, 0.64 mmol) in CH₃CN (50 ml) under a stream of dinitrogen, PH₃ was slowly bubbled for about 100 min. Caution: PH₃ is extremely toxic and spontaneously ignites in air. The mixture was stirred for an additional 60 min and treated with an excess of NEt₃ (0.15 g, 1.48 mmol). The volatile material was then removed in vacuo. The residue was redissolved in CH₂Cl₂ and the solution filtered through an alumina pad $(3 \times 5 \text{ cm})$. The filtered red solution was reduced to minimum volume, layered with n-pentane and cooled to -20 °C affording red crystals of complex 4 (0.10 g, 41%). Anal. Found: C, 45.3; H, 3.2. Calc. for $C_{15}H_{12}Fe_2NO_3P$: C, 45.39; H, 3.05%. IR (cm⁻¹, CH_2Cl_2): $\nu = 2143w$ (CN); 1993s, 1963w, 1799m (CO). ¹H NMR (CD₃CN): δ =5.29 (d, J(PH)=212 Hz, 2H, PH), 5.07 (s, 10H, Cp). ¹³C NMR (CD₂Cl₂): δ =266.5 $(\mu$ -CO), 211.3 (CO), 210.4 (d, J(PC) = 16 Hz, CO) 135.4 (br, CN), 120.0 (d, J(PC) = 64 Hz, μ -C), 92.0 (Cp). Signals of lower intensity (9:1) at 211.2 (CO) and 91.9 (Cp) due to the cis-isomer bearing the PH₂ group on the Cp side are also observed). ${}^{31}P{}^{1}H{}$ NMR (CDCl₃): $\delta = 64.0$ (major isomer), 61.4 (minor isomer).

Synthesis of $[Fe_2Cp_2(CO)_2(\mu-CO){\mu-CO}]$ $C(CN)PH_3$ SO₃CF₃ (3)

Complex 3 was better prepared by treating a CH₂Cl₂ solution (20 ml) of 4 (0.18 g, 0.45 mmol) with HSO₃CF₃ (0.07 g, 0.50 mmol). The mixture was stirred for 10 min and evaporated to dryness *in vacuo* and the residue washed with n-pentane. Attempts to crystallize the oily, red residue from CH₂Cl₂/n-pentane failed. Yield 0.23 g, 93%. IR (cm⁻¹, CH₃CN): ν =2166w (CN); 2005s, 1989sh, 1828m (CO). ¹H NMR (CD₃CN): δ =6.40 (d, J(PH)=494 Hz, 3H, PH), 5.33 (s, 10H, Cp).

Acknowledgements

We thank the C.N.R. and Ministero della Università e Ricerca Scientifica (M.U.R.S.T.) for financial support.

References

- 1 L. Busetto, L. Carlucci, V. Zanotti, V. G. Albano and M. Monari, Chem. Ber., 125 (1992) 1125.
- 2 L. Busetto, V. Zanotti, S. Bordoni, L. Carlucci, V. G. Albano and D. Braga, J. Chem. Soc., Dalton Trans., (1992) 1105.

- 3 L. Busetto, S. Bordoni, V. Zanotti, V. G. Albano and D. Braga, *Gazz. Chim. Ital.*, 118 (1988) 667.
- 4 L. Busetto, M. C. Cassani, V. Zanotti, V. G. Albano and D. Braga, J. Organomet. Chem., 415 (1991) 395.
- 5 V. G. Albano, S. Bordoni, D. Braga, L. Busetto, A. Palazzi and V. Zanotti, Angew. Chem. Int. Ed. Engl., 30 (1991) 847.
- 6 S. C. Kao, Paul P. Y. Lu and R. Pettit, Organometallics, 1 (1982) 911.
- 7 J. C. Jeffrey, R. Navarro, H. Razay and F. G. A. Stone, J. Chem. Soc., Dalton Trans., (1981) 2471.
- 8 M. H. Quick and R. J. Angelici, Inorg. Chem., 20 (1981) 1123.
- 9 N. C. Schroeder, R. Funchess, R. A. Jacobson and R. J. Angelici, Organometallics, 8 (1989) 521.