Copper(I) complexes 05 sterically-hindered 2-pyridinethione ligands. Crystal structures of $[CuCl(2-SC₅H₂NH-3-SiMe₃-6-SiEt₃)₂]$ and the disulfide, $[-2-SC₅H₂N-3,6-(SiMe₂Bu^t)₂]$

Eric Block, Gabriel Ofori-Okai *Department of Chemistry, State University of New York at Albany, Albany, NY 12222 (U.S.A.)*

Hyunkyu Kang and Jon A. Zubieta* *Depattment of Chemisny, Syracuse University, Syracuse, NY 13244 (U.&d.)*

(Received April 12, 1991)

Abstract

The reactions of Cu(II)X₂ species (X=Cl⁻, NO₃⁻) with 3-(triorganosilyl)pyridine-2-thiols and 3,6-(triorganosilyl)pyridine-2-thiols were investigated. When the less sterically hindered 3-(triorganosilyl)pyridine-2-thiol ligands were used, Cu(I) species of the type $\left[\text{Cu}(2\text{-}SC_sH_3NH-3\text{-}SiR_3)_3\right]^+$ were isolated. In contrast, use of the sterically demanding ligands $SC_5H_2NH-3-SiMe₃-6-SiEt₃$ and $SC_5H_2NH-3,6-SiEt₃$ $\text{SiMe}_2\text{Bu'}$) yielded the Cu(I) species $\text{Cu}(2\text{-SC}_5\text{H}_2\text{NH}-3\text{-SiMe}_3\text{-}6\text{-SiEt}_3)$ ₂Cl] (2) and $\text{Cu}(2\text{-SC}_5\text{H}_2\text{NH}-3\text{-SiMe}_3)$ 3,6-SiMe,Bu'),Cl] (3). The sulfur ligands are present as monodentate donors in the neutral thione form, protonated at the pyridine nitrogen. The isolation of 3,3', 6,6'-tetrakis(dimethyl-tert-butylsilyl)pyridyl disulfide (4) confirms the role of the thiolates as reductants in the synthesis of the Cu(I) complexes. C_{restal} data: $[Cu(2-SCH-NH-3-SiMe₂,6-SiEt₂], C1(2),$ monoclinic P2. lc , $a = 16.845(3), b = 13.421(2)$ $s = 17.288(3)$ \AA , $R = 92.46(1)$ ^o, $V = 3904.8$ \AA , \AA , Ξ Ξ , Ξ , Ξ , Ξ , 1.18 g cm⁻³. Structure refinement and solution based on 1810 reflections converged at 0.065. $C_{34}H_{64}N_2Si_4S_2$ (4), orthorhombic *Pbcn, a* = 12.720(2), $b = 15.521(3)$, $c = 21.162(3)$ Å, $V = 4177.8(10)$ Å³, $Z = 4$, $D_{\text{calc}} = 1.07$ g cm⁻³, 2290 reflections, $R = 0.058$.

Introduction

Metal complexes of heterocyclic thione donor ligands have received considerable attention as a consequence of the flexibility of bonding modes adopted [l-24] and by virtue of their wide ranging applications [25]. As part of our investigations of the chemistry of sterically-hindered sulfur donor ligands $[26-36]$, we have synthesized a series of 3-(triorganosilyl)pyridine-2-thiols (A) and 3,6 bis(triorganosilyl)pyridine-2-thiols **(B)** and described their coordination chemistry with $Ag(I), Cu(I), Hg(II)$ and Mo(III)-Mo(V).

In the course of our investigations of the chemistry of ligand types **A** and **B** with copper, we noted that reactions of **A** with Cu(1) precursors yielded the hexanuclear species $\left[\text{Cu}(2\text{-}SC_5H_3N-3\text{-}SiR_3)\right]_6$ with the ligand adopting the μ_3 -pyridine-2-thiolate mode. On the other hand, reactions of **B** with both Cu(1) and Cu(I1) precursors yielded only Cu(1) mononuclear species of the general types $\left[\text{Cu}(2\text{-}SC_5H_2NH-3,6\text{-}C_4H_1\right]$ $SiR₃$ ₃](NO₃) and Cu(2-SC₅H₂NH-3,6-SiR₃)₂Cl]. In

this paper, we report the structure of the latter compound and that of the disulfide $[-2-S C_5 H_2 N 3,6$ -(SiMe₂Bu')₂ \vert ₂ which is formed in the reduction of Cu(II) of the starting material.

Experimental

The ligands 2 -HSC₅H₃N-3-SiMe₃, 2 -HSC₅H₃N-6- $SiMe₂Bu^t$ and 2-HSC₅H₂N-3,6-(SiMe₂Bu^t)₂ were prepared as previously described [33]. Dichloromethane was technical grade and was distilled from $CoCl₂$ and P_4O_{10} . The following instruments were used in the study: IR, Perkin-Elmer 283B IR spectrophotometer; X-ray crystallography, Rigaku APC-5s fourcircle diffractometer.

^{*}Author to whom correspondence should be addressed.

Synthesis of (Cu(2-SC,H,NH-3-SiMe,),]NOj

The reaction of $Cu(NO₃)₂·6H₂O$ (0.296 g, 1 mmol) with $2-HSC₅H₃N-3-SiMe₃$ (0.732 g, 4.0 mmol) in methanol (20 ml) produced a yellow solution upon stirring for 1 h at room temperature. The solution was concentrated to 10 ml and layered with diethyl ether (15 ml). After standing at 4° C for 5 days, yellow blocks of $[Co(2-SC₅NH-3-SiMe₃)₃]NO₃ (1)$ were collected in 55% yield. Anal. Calc. for $C_{24}H_{39}N_4O_3Si_3Cu$:, C, 43.3; H, 5.87; N, 8.43. Found: C, 43.3; H, 5.83; N, 8.36%. The complex [Cu(2- SC₅H₃NH-3-SiMe₃)₃]ClO₄ (1a) was prepared analogously from $Cu(CIO₄)₂·6H₂O$.

Synthesis of [Cu(2-SC,H,NH-3-SiMe,-6-SiEt3)2ClJ

Addition of a solution of 2-HSC₅H₂N-3-SiMe₃-6- $SiEt₃$ (1.188 g, 4 mmol) in methanol (10 ml) to a solution of $CuCl₂·2H₂O$ (0.170 g, 1 mmol) in methanol (15 ml) results in a gradual change of the solution color to yellow-brown. After filtration to remove a small amount of insoluble impurity, the solution was carefully layered with diethyl ether (30 ml). Upon standing at room temperature for 10 days, red-orange crystals of $\text{[Cu(2-SC₅H₂NH-3-SiMe₃-6 SIE(t₃)₂Cl$ (2) were collected in 65% yield. Anal. Calc. for $C_{28}H_{54}N_2Si_4S_2ClCu$: C, 48.5; H, 7.79; N, 4.04, Found: C, 48.2; H, 7.93; N, 4.14%.

Synthesis **of** *[Cu(2-SC5H,NH-3,6-SiMe,Bu')zCl] and the isolation of 3,3', 6,6'-tetrakis(dimethyl-tertbutylsi~l)-di-2-pyridyl disulfide*

The reaction of $CuCl₂·2H₂O$ (0.170 g, 1 mmol) with $2-HSC₅H₂N-3,6-SiMe₂Bu^t$ (1.356 g, 4 mmol) in methanol (20 ml) yielded a red solution upon stirring for 1 h at room temperature. The solution was evaporated to dryness, and the resultant oil washed with diethyl ether (20 ml). The viscous red residue was dissolved in methylene chloride (10 ml), and the resultant red solution layered with diethyl ether. After standing at 4 °C for 1 week, orange crystals of $\left[Cu(2-SCA)$ ₂NH-3,6-SiMe₃ $\right)$ ₂Cl] (3) were collected in 40% yield. *Anal*. Calc. for C₃₄H₆₆N₂Si₄S₂ClCu: C, 52.5; H, 8.49; N, 3.60. Found: C, 52.2; H, 8.31; N, 3.75%.

The ether washings from the preparation of (3) were allowed to evaporate slowly at c . 10 °C in a 5 mm diameter test tube of 15 cm length, to give a bright orange crystalline product which was identified as the disulfide, RSSR (4) $(R = -C_5H_2N-3,6-$ SiMe₂Bu^t). *Anal*. Calc. for C₃₄H₆₄N₂Si₄S₂: C, 60.4; H, 9.47; N, 4.14. Found: C, 60.0; H, 9.35; N, 4.02%.

X-ray structure determinations

Full details of the crystallographic methods may be found in ref. 37. The crystal data and experimental conditions are summarized in Table 1. In no instance was an extinction correction applied to the data. Idealized hydrogen atom positions were used throughout the analysis, with the C-H distances set at 0.96 A. All non-hydrogen atoms of both structures were refined anisotropically.

Results and discussion

The 2-pyridinethiol derived ligands of types **A** and **B** react with Cu(I1) precursors via a redox process to give mononuclear Cu(1) complexes and derivatized dipyridyl disulfides as products. The identity of the complex product is dependent on the degree of substitution of the 2-pyridinethiol ligand, such that reaction of the monosubstituted $2-HSC₅H₃N-3-SiMe₃$ yielded complexes of the type $\text{[Cu(2-SC, H₃NH-3 \text{SiMe}_3$)₃] $\text{X}(X = NO_3^-$, ClO₄⁻) while the disubstituted ligands 2 -HSC₅H₂NH-3,6-SiMe₃ and 2 -HSC₅H₂NH- $3-SiMe₃$ -6-SiEt₃ yielded complexes of the class $\left[Cu(2-Si) \right]$ $SC_5H_2NH-3.6-SiR_3$ ₂Cl] (2) and 3).

 $CuX_2 + 4HSC_5H_3N-3-SiMe_3 \longrightarrow$

 $[Cu(SC₅H₃NH-3-SiMe₃)₃]++¹/₂RSSR+HX+X⁻$

 $(R = -C_5H_3N-3-SiMe_3)$

 $CuCl₂+3HSC₅H₂N-3,6-SiR'₃ \longrightarrow$

 $[Cu(SC₅H₂NH-3,6-SiR'₃)₂Cl] + ¹/₂R'SSR' + Cl^-$

$$
(R' = -C_5H_2N-3, 6-SiR_3)
$$

The increased steric bulk associated with the ligands of type **B** relative to that of ligand **A** may preclude the ligation of three heterocyclic thione ligands to the Cu(1) center. The coordination requirements of the $Cu(I)$ sites of 2 and 3 are satisfied by ligation to the chloride donor.

Reactions of Cu(I1) species with the parent 2 pyridinethiol ligand have been shown to yield both the three coordinated species $\text{[Cu(2-SC₅H₄NH)₃]NO₃$ **(4a)** and the tetrahedral complex [Cu(2- $SC₅H₄NH₄$]ClO₄ (4b). Complex 1 is mononuclear in solution by osmometry and is most likely structurally analogous to $\left[\text{Cu}(2\text{-}SC_{5}H_{4}NH)_{3}\right]NO_{3}$, with the Cu(1) center displaying a distorted trigonal planar geometry.

The IR spectra of the complexes l-3 exhibit bands in the 3100-3400 cm⁻¹ region which may be assigned to $\nu(N-H)$, confirming that the neutral thione form of the ligand is adopted and that the pyridyl nitrogens are not involved in bonding [38]. Sulfur ligation is indicated by the presence of features at c. 350 cm⁻¹, which are assigned to ν (Cu–S) [39]. The most prominent IR absorption bands occur in the $810-860$ cm⁻¹

TABLE 1. Summary of crystal data and experimental conditions for the X-ray crystallographic studies of [Cu(2-SC₅H₂NH-3-SiMe₃-6-SiEt₃)₂Cl] (2) and 3,3',6,6'-tetrakis(dimethyl-tert-butylsilyl)-di-2-pyridyl disulfide (4)

range and are associated with $\nu(S_i-C)$ of the ligands. **The electronic spectra of the complexes exhibit two intense absorptions with maxima at 360 and 280 nm, assigned as intraligand transitions [40].**

The structure of $\left[\text{Cu}(2\text{-}SC_5H_2NH\text{-}3\text{-}SiMe_3\text{-}6\text{-}Br_4H_5\right]$ $SIEt₃_{2}Cl$ (2) is shown in Fig. 1; atomic positional **parameters are listed in Table 2, and selected bond lengths and angles in Table 3. The structure consists**

Fig. 1. The structure of $\left[\text{Cu}(\text{SC}_2\text{H}_2\text{NH-3-SiMe}_3\text{-6-SiEt}_3)_{2}\text{Cl}\right]$, showing the atom-labelling scheme.

of discrete mononuclear units with the Cu(1) center displaying distorted trigonal planar geometry through ligation to two sulfur donors of the neutral 2(1H) pyridinethione form of the ligands and to the chloride group. In contrast, the $Cu(I)$ complex of the underivatized parent ligand 2-pyridinethiol, $SC₅H₄NH$, adopts the tris(pyridinethione) geometry $[Cu(SC₅H₄NH)₃]$ ⁺, with trigonal planar coordination to the $Cu(I)$ center [4a]. The presence of two, rather than three, pyridinethione ligands to the Cu(1) center of 2 is a consequence of the steric constraints imposed by the triorganosilyl groups at the 3- and 6-positions of the ligand rings. Since introduction of a single trimethylsilyl group at the 3-position does not preclude isolation of the tris(pryidinethione) complex $[Cu(2-SC₅H₄NH-3-SiMe₃)₃]Cl$ (1), we conclude that the presence of bulky substituents at both the 3 and 6-positions of the rings are required to provide sufficient steric encumbrance to prevent coordination of the third pyridinethione group. Using MM2 molecular mechanics calculations, minimum energy geometries were determined for [Cu(SC₅H₃NH-3- SiMe_3)₃]⁺ and [Cu(SC₅H₄NH)₃] ⁺ and for the unrealized 3,6-bis(triorganosilyl)pyridine-2-thiol derivative $\left[\text{Cu}(\text{SC}_5\text{H}_2\text{NH-3},6\text{-}(\text{SiMe}_3)_2)\right]^+$. While the former complexes gave reasonable energy minima for trigonal planar geometries, the latter case produced unrealistic bond lengths for Cu-S interactions and necessitated unreasonable C-Si bond lengthening to accommodate the three bulky ligands about the Cu(1) center. Cone angle calculations [33] for the ligands

likewise confirmed that three of the 3,6-substituted ligands cannot be accommodated about a trigonal planar Cu(1) center with Cu-S distances of approximately 2.20–2.30 Å without introducing significant non-bonding contacts between the triorganosilyl groups.

Distorted trigonal planar geometry for Cu(1) coordinated to sulfur ligands has been reported for tris(tetramethylthiourea)Cu(I)tetrafluoroborate [41] and tris(thiophenolato)Cu(I) [42]. The Cu-S bond lengths (2.198(4) and 2.204(4) Å) are unexceptional and fall within the range of values cited in ref. 42 and for other examples of thione coordination to Cu(I), of which $\left[\text{Cu}(\text{SC}_5\text{H}_4\text{NH})_4\right]^+$ [4b] and $[Cu(SC₅H₄NH)₂(PPh₃)₂]$ ⁺ [40] are illustrative. The copper atom rests $0.021(1)$ Å out of the S1-S2-Cl plane. The valence angles at the copper deviate from the trigonal planar idealized value of 120", principally as a consequence of the steric requirements of the thione ligands which require the expansion of the S1–Cu–S2 angle to 121.5° and the concomitant contraction of the S-Cu-Cl angles to 119.0 and 119.5".

Although the hydrogen atoms associated with Nl and N2 were located on the final difference Fourier map, the protonated thione form of the ligand was also confirmed by the metrical parameters associated with the $(SC_5H_2N-3-SiMe₃-6-SiEt₃)$ units. The S1-C11 and S2-C21 distances $(1.71(2)$ Å, av.) are significantly shorter than the corresponding S-C distances for complexes containing the deprotonated

TABLE 2. Atomic position $\mathcal{L}^{\mathcal{L}}$, $\mathcal{L}^{\mathcal{L}}$ 1 ADLE 2. Atomic post

Atom	x	y	\overline{z}
Cu	0.0264(1)	0.0742(1)	0.2440(1)
Cl	0.1185(2)	0.0717(3)	0.1513(2)
S(1)	0.0269(2)	$-0.0457(3)$	0.3306(2)
S(2)	$-0.0614(2)$	0.1960(3)	0.2448(2)
Si(1)	0.0448(3)	$-0.2372(4)$	0.4524(3)
Si(2)	0.2640(2)	$-0.1760(3)$	0.1463(2)
Si(3)	$-0.1993(3)$	0.3757(4)	0.2158(3)
Si(4)	0.0717(3)	0.2508(3)	$-0.0343(2)$
N(1)	0.1444(6)	$-0.1278(7)$	0.2542(5)
N(2)	$-0.0106(6)$	0.2443(8)	0.1066(6)
C(11)	0.0965(7)	$-0.135(1)$	0.3158(7)
C(12)	0.1057(7)	$-0.218(1)$	0.3653(7)
C(13)	0.1646(8)	$-0.283(1)$	0.3478(7)
C(14)	0.2124(8)	$-0.275(1)$	0.2827(8)
C(15)	0.2021(7)	$-0.196(1)$	0.2333(7)
C(21)	$-0.0633(8)$	0.264(1)	0.1618(7)
C(22)	$-0.1208(7)$	0.340(1)	0.1462(7)
C(23)	$-0.1165(9)$	0.390(1)	0.0763(9)
C(24)	$-0.058(1)$	0.366(1)	0.0239(8)
C(25)	$-0.0056(7)$	0.292(1)	0.0358(7)
C(31)	$-0.057(1)$	$-0.248(1)$	0.425(1)
C(32)	0.066(1)	$-0.142(1)$	0.527(1)
C(33)	0.073(1)	$-0.358(1)$	0.495(1)
C(34)	0.1964(9)	$-0.158(1)$	0.0623(8)
C(35)	0.236(1)	$-0.138(1)$	$-0.013(1)$
C(36)	0.327(1)	$-0.066(1)$	0.1653(9)
C(37)	0.384(1)	$-0.074(2)$	0.230(1)
C(38)	0.3251(9)	$-0.292(1)$	0.1339(8)
C(39)	0.279(1)	$-0.383(1)$	0.105(1)
C(41)	$-0.267(1)$	0.465(1)	0.1673(9)
C(42)	$-0.153(1)$	0.435(2)	0.301(1)
C(43)	$-0.258(1)$	0.269(1)	0.242(1)
C(44)	0.062(1)	0.334(1)	$-0.1211(9)$
C(45)	$-0.005(1)$	0.314(1)	$-0.176(1)$
C(46)	0.171(1)	0.268(1)	0.0124(9)
C(47)	0.191(1)	0.370(1)	0.042(1)
C(48)	0.051(1)	0.118(1)	$-0.0583(9)$
C(49)	0.107(1)	0.068(1)	$-0.106(1)$

 $\frac{1}{2}$, $\frac{1}{2}$, contribution of the resonance of the resonance in the pattern of the pattern of the pattern of the pattern of the patients of the pattern of the pa contribution of the resonance form (C). The pattern of C-C bond distances within the rings likewise conforms to that consistent with the thione geometry.

The presence of significant hydrogen bonding is rue presence or signmeant nydrogen bonding is suggested by the orientation of the pyridyl rings relative to the chlorine ligand and confirmed by the $C1-H1$ and $C1-H2$ distances of $2.34(2)$ and $2.36(2)$ Å. This interaction may account in part for the contraction of S–Cu–Cl angles from 120[°] to an average

 \overline{A} I ADLE 3. Selected bond lengths (A)

$Cu-Cl$	2.279(4)	$C21-N2$	1.36(1)
$Cu-S1$	2.198(4)	$N2 - C25$	1.39(1)
$Cu-S2$	2.204(4)	$C21-C22$	1.43(1)
$S1 - C11$	1.71(1)	$C22-C23$	1.38(1)
$S1 - C21$	1.70(1)	$C23-C24$	1.40(1)
$C11-N1$	1.37(1)	$C24-C25$	1.34(2)
$N1 - C15$	1.39(1)	$Si-C(ring)$, av.	1.89(2)
$C11-C12$	1.41(1)	Si-C(methyl), av.	1.84(2)
$C12-C13$	1.37(1)		
$C13-C14$	1.42(2)		
$C14-C15$	1.37(1)		
$Cl-Cu-S1$	119.0(2)	$Cu-S1-C11$	113.4(5)
$Cl-Cu-S2$	119.5(2)	$Cu-S2-C21$	112.3(5)
$S1-Cu-S2$	121.5(2)		

Fig. 2. The structure of $3,3',$

value of 119.3(4)" which causes the sterically sigvalue of 119.5(4) which causes the sterically significant triethylsilyl groups to approach contact distances. **The structure of 3,3',6,6'-tetrakis(dimethyl-tert-**

I ne structure or 5,5,0,0 -tetrakis dimethyl-tertbutylsilyl)-2-pyridyl disulfide (4) is illustrated in Fig. 2. Atomic positional parameters and selected bond lengths and angles for 4 are listed in Tables 4 and 5, respectively. The S-S bond length of $2.019(2)$ Å is similar to those previously reported for the unsubstituted analogue di-2-pyridyl disulfide [43] and the 3,3'-dihydroxydi-2-pyridyl disulfide [44] of $2.0180(2)$ and $2.016(2)$ Å, respectively. The N-C-S-S **lies** torsion angle of 9.2° indicates that the S-S bond lies approximately in the plane of each pyridine ring. As shown more clearly in Fig. 3, the disulfide adopts the equatorial conformation, rather than the less frequently observed axial conformation which exhibits **X-C-S-S** torsion angles near 90° 144, 451. The nitrogen atoms are in the *cis,cis* positions relative to the S-S group, a conformation also observed for the 3,3'-dihydroxydi-2-pyridyl disulfide derivative [44].

The S-S bond length and the equatorial conformation adopted by 4 are consistent with general

TABLE 4. Atomic positional parameters for RSSR, $R = 0.11136680$

	x	y	\boldsymbol{z}
S(1)	$-569(1)$	$-184(1)$	2832(1)
Si(1)	1834(1)	2609(1)	3190(1)
Si(2)	$-1763(1)$	$-36(1)$	4310(1)
N(1)	520(3)	1208(2)	3169(2)
C(1)	$-229(3)$	674(3)	3365(2)
C(2)	$-798(3)$	747(3)	3936(2)
C(3)	$-556(4)$	1494(3)	4271(2)
C(4)	194(4)	2078(3)	4068(2)
C(5)	737(3)	1915(3)	3513(2)
C(6)	1794(5)	2531(4)	2318(2)
C(7)	1598(5)	3743(3)	3435(3)
C(8)	3123(4)	2199(3)	3507(3)
C(9)	3136(5)	2271(4)	4234(3)
C(10)	3284(5)	1257(4)	3340(3)
C(11)	4011(5)	2743(5)	3243(4)
C(12)	$-1645(4)$	91(3)	5181(2)
C(13)	$-1441(4)$	$-1181(3)$	4139(2)
C(14)	$-3146(4)$	238(3)	4063(2)
C(15)	$-3279(5)$	137(4)	3346(3)
C(16)	$-3425(5)$	1157(4)	4246(3)
C(17)	$-3928(5)$	$-386(5)$	4393(3)

TABLE 5. Selected bond lengths (A) and angles $(°)$ for RSSR, $R = -C_5H_2N-3.6-SiMe_2Bu'$ (4)

empirical rules for the geometries of aromatic disulfides [44]. So long as the substituents at the β positions (the 6-SiMezBu' group on C5) are not strongly electron-donating, the equatorial conformation and concomitant short S-S distances $(2.016-2.023 \text{ Å})$ are observed. Substituents more distant from the disulfide group, at δ or γ positions do not affect the S-S bond distance or the X-C-S-S torsion angles. Thus, the $3\text{-}SiMe₂Bu^t$ group of 4 has no influence on the observed geometry.

Fig. 3. The structure of 4 viewed down the Sl-Sla axis.

Acknowledgement

This work was supported by the National Institute of Health (Grant No. GM 22566).

References

- 1 B. P. Kennedy and A. B. P. Lever, *Can. 1. Chem. 50* 2.572 , 2.760 . (1972) 3488.
- $\frac{1}{2}$ $\frac{1}{2}$ Crystallogr., Sect. B, 35 (1979) 2875.
- $\frac{1}{4}$ (1) $\frac{1}{4}$ (Bates, H. M. Dawes and M. B. Hursthouse, J. Chem. *Sot.,* Dalton *Trans.,* (1988) 227.
- $\mu\mu\sigma_{\rm g}$, sect. C, 71 (1705) 1040. A& *CrystuUogr., Sect. C,* 39 (1983) 178; (b) S. C. Acta Crystallogr., Sect. C, 39 (1983) 178; (b) S. C.
Kokkou, V. Schramm and P. Karagiannides, Acta Crys*tallogr., Sect. C,* 41 (1985) 1040.
- \overline{a} Plazzogna, I. *Chem. Sot., Dalton Trans., (1987) 818.* E. S. Raper, *Coord. Chem. Rev.,* 61 (1985) 115.
- \tilde{z}
- 8 P. Mura, B. G. Olby and S. D. Robinson, J. *Chem.* J. A. Broomhead, R. Greenwood, W. Pienkowski and M. Sterns, *Ausr. J. Chem., 36 (1986) 1895.*
- 9 A. J. Deeming and N. M. Meah, Inorg *Chim. Actu, Sot., Dalton Trans., (1985) 2101,* and refs. therein.
- 10 *S. G.* Rosenfield, H. P. Berends, L. Gelmini, D. W. *117 (1986) L13.*
- Stephan and P. K. Mascharak, Inorg. Chem., 26 (1987) 2792.
- 11 P. Mura and S. D. Robinson, *Acra Crystallogr., Sect. C, 40 (1984) 1798.*
- *12* P. Mura, B. G. Olby and S. D. Robinson, Inorg. Chim. *Acra, 98 (1985) L21.*
- *13* K. S. Nagaraja and M. R. Udupa, *Bull. Chem. Sot. Jpn.,* 57 (1984) 1705.
- 14 F. A. Cotton, P. E. Fanwick and J. W. Fitch III, Inorg Chem., 17 (1978) 3254.
- 15 S. G. Rosenfield, S. A. Swedberg, S. K. Arora and P. K. Mascharak, *Inorg. Chem.*, 25 (1986) 2109.
- 16 A. J. Deming, M. N. Meah, H. M. Dawes and M. B. Hursthouse. L *Organomet. Chem., 299 (1986) C25.*
- *17* M. A. Ciriano, F. Viguri, L. A. Ora, A. Tiripicchio and M. Tiripicchio-Camelini, Angew. Chem., Int. Ed. Engl., 26 (1987) 444.
- 18 N. Zhang, S. R. Wilson and P. A. Shapley, Organo*metallics, 7 (1988)* 1126.
- 19 K. Umakoshi, I. Kinoshuta, A. Ichimura and S. Ooi, Inorg. Chem., 26 (1987) 3551.
- *20* E. M. Padilla, J. M. Yamamoto and C. M. Jensen, *Inorg. Chim. Acta, I74 (1990) 209.*
- *21 S.* Kitagawa, M. Munckoto, H. Shimono, S. Matsuyama and H. Masuda, I. *Chem. Sot., Dalton Trans., (1990) 2105.*
- *22* L. A. Oro, M. A. Ciriano, F. Viguri, A. Tiripicchio-Camellini and F. J. Lahoz, Nouv. 1 *Chim., 10 (1986) 75.*
- *23* A. J. Deeming, M. N. Meah, P. A. Bates and M. B. Hursthouse, L *Chem. Sot., Dalton Trans., (1988) 235.*
- *24* A. J. Deeming, M. Karin, P. A. Bates and M. B. Hursthouse, Polyhedron, 7 (1988) 1401.
- 25 E. S. Raper, *Coord. Chem. Rev., 61 (1985) 115.*
- *26* K. Tang, M. Aslam, E. Block, T. Nicholson and J. Zubieta, *Inorg Chem., 26 (1987) 488.*
- *27* E. Block, M. Gernon, H. Kang, S. Liu and J. Zubieta, J. *Chem. Sot., Chem. Commun., (1988) 1031.*
- 28 E. Block, M. Gemon, H. Kang, G. Ofori-Okai and J. Zubieta, *Inorg.* Chem., 28 (1989) 1263.
- 29 E. Block, M. Gernon, H. Kang and J. Zubieta, *Angew. Chem., Int. Ed. En@., 27 (1988) 1342.*
- *30* E. Block, H. Kang, G. Ofori-Okai and J. Zubieta, Inorg. *Chim.* Acta, 166 (1990) 155.
- 31 E. Block, H. Kang, G. Ofori-Okai and J. Zubieta, *Inorg. Chim. Acta, 167 (1990) 147.*
- *32* E. Block, D. Macheroni, S. N. Shaikh and J. Zubieta, *Polyhedron, 9 (1990) 1429.*
- *33* E. Block, M. Brito, M. Gemon, D. McGowty, H. Kang and J. Zubieta, *Inorg.* Chem., 29 (1990) 3172.
- 34 E. Block, M. Gemon, H. Kang, G. Ofori-Okai and J. Zubieta, *Inorg. Chem., 30 (1991) 1736.*
- *35* E. Block, H. Kang and J. Zubieta, *Inorg. Chim. Acra, 181 (1991) 277.*
- *36* E. Block, M. Gemon, H. Kang, S. Liu and J. Zubieta, *Inorg Chim. Acta, I67 (1990) 143.*
- *37 C.* E. PIluger, J. Kallmerten and D. J. Plata, Acta Crystaliogr., Sect. C, 45, (1989) 1031.
- 38 E. S. Raper and J. C. Brooks, J. *Inorg. Nucl. Chem., 39 (1977) 2163.*
- *39* K. Nakamoto, The *Infrared Spectra of Inorganic and Coordination Compounds,* Wiley. New York, 1970.
- 40 P. Karagianidis, P. Aslanidis, S. Papastefanou, D. Mentzafos, A. Hountas and A. Terzis, *Polyhedron, 9 (1990) 2833.*
- *41* M. S. Weinisger, G. W. Hunt and E. L. Amma, J. *Chem. Sot., Chem. Commun., (1972) 1140.*
- *42* D. Coucouvanis, C. N. Murphy and S. K. Kanodia, *Inotg.* Chem., 19 (1980) 2993.
- 43 N. V. Raghavan and K. Seff, *Acta Crystallogr.*, Sect. B, *31 (1975) 327.*
- *44* L. S. Higashi, M. Lundeen and K. Seff, /. *Am. Chem. Sot., IO0 (1978) 8101.*
- *45* E. Shefter, J. *Chem. Sot. B, (1970) 903.*