X-ray Structure of Dimeric [Co(poph)(NCS)₂]₂, an N-Oxide-bridged Cobalt(II) Complex with 2-Pyridinecarboxaldehyde 1-Oxide 2'-Pyridinylhydrazone (poph)

DONALD C. CRAIG*, DAVID J. PHILLIPS* and F. M. ZAFAR KAIFI School of Chemistry, University of New South Wales, Kensington, NSW 2033 (Australia) (Received November 17, 1988; revised February 16, 1989)

Abstract

An X-ray structure determination is reported for the N-oxide-bridged dimeric complex [Co(poph)- $(NCS)_2]_2$ with 2-pyridinecarboxaldehyde 1-oxide 2'-pyridinylhydrazone (poph). The complex is monoclinic, $P2_1/c$, with a = 12.460(7), b = 9.884(3), c = 16.562(8) Å, $\beta = 127.60(2)^{\circ}$ and Z = 4. The ligand coordinates as a planar ONN tridentate via the N-oxide oxygen and the hydrazone and pyridyl nitrogens. A second out-of-ligand-plane bond from the N-oxide oxygen to another cobalt produces a centrosymmetric N-oxide-bridged structure. The in-ligand and out-of-ligand-plane Co-O distances are 2.028(5) and 2.460(5) Å, respectively. Each cobalt(II) is octahedrally coordinated by two cis-Nbonded thiocyanates, by an ONN-bonded poph molecule, and by a bridging N-oxide oxygen. This is the first structure report of a pyridine N-oxidebridged cobalt(II) complex.

Introduction

Metal complexes of pyridine N-oxide and its substituted derivatives have been extensively investigated [1]. Many N-oxide-bridged copper(II) complexes, displaying strong magnetic interaction, have been obtained [1, 2], but few pyridine N-oxide-bridged complexes have been reported with other transition metal ions [3, 4].

In this laboratory we have been investigating ligands based on pyridine N-oxide, with donor substituents in the 2- and 2,6-positions, to see whether N-oxide bridging may be obtained with a wider range of transition metal ions. We have studied ligands I-IX [5-12]. Some nickel(II) and cobalt(II) complexes with ligands II, V, VI and VII are antiferromagnetic and were therefore assigned N-oxide-bridged structures, but no direct evidence for N-oxide bridging was available to us [7, 9, 10].

In particular, Landers and Phillips found that, with the ligand poph (VI) the complexes of cobalt(II)

and nickel(II) halides and thiocyanates are antiferromagnetic and appear to be N-oxide-bridged [10]. With the ligand poqh (VII) the nickel(II) thiocyanate complex is apparently N-oxide-bridged, the nickel(II) halide complexes were assigned halidebridged structures, and the cobalt(II) halide complexes are five-coordinate. There was no evidence

© Elsevier Sequoia/Printed in Switzerland

^{*}Authors to whom correspondence should be addressed.

for N-oxide bridging in the complexes of poph and poqh with copper(II) salts and with metal nitrates, because these complexes display no significant magnetic interaction [10].

In this paper, we report the X-ray crystal structure of the dimeric complex $[Co(poph)(NCS)_2]_2$ with 2-pyridinecarboxaldehyde 1-oxide 2'-pyridinylhydrazone (poph, VI). This is the first structure report of a pyridine N-oxide-bridged cobalt(II) complex. Many crystal structures involving pyridine N-oxide bridging are known with copper(II) complexes [1, 2] but the only one reported for another transition metal appears to be of $[Mn(dpco_2o)-(H_2O)_2]_n$ (H₂dpco₂o = 2,6-pyridinedicarboxylic acid 1-oxide) [4].

Experimental

$[Co(poph)(NCS)_2]_2$

Single crystals of $[Co(poph)(NCS)_2]_2$ were obtained by the slow evaporation of a solution of poph (0.2 g) [10] and cobalt(II) thiocyanate (0.15 g) in absolute ethanol (100 ml).

Analyses and physical measurements

These were as previously described [6].

Crystallography

Crystal data

 $C_{13}H_{10}CoN_6OS_2$, *M*, 389.32; monoclinic, space group $P2_1/c$; *a*, 12.460(7); *b*, 9.884(3); *c*, 16.562(8) Å; β , 127.60(2)°; *V*, 1616(1) Å³; D_c , 1.60 g cm⁻³, *Z*, 4; μ_{Mo} , 13.18 cm⁻¹. Crystal size: 0.03 × 0.15 × 0.15 mm, max. and min. transmission coefficients 0.78 and 0.92.

Structure determination

Intensities for 2835 reflexions were measured for a plate of somewhat uneven thickness with an Enraf-Nonius CAD-4 diffractometer in $\theta/2\theta$ scan mode, using graphite monochromatized molybdenum radiation (λ 0.7107 Å) and $2\theta_{max}$ of 50°. Data were corrected for absorption. A total of 1547 reflexions with $I > 3\sigma(I)$ were considered observed, and were used for least-squares refinement after structure solution by direct phasing and Fourier methods. Non-hydrogen atoms were refined with anisotropic thermal parameters; hydrogen atoms were located in difference Fouriers and given isotropic temperature parameters equivalent to those of the atoms to which bonded.

The final residuals R, R_w were 0.050, 0.060. Reflexion weights used were $1/\sigma^2(F_o)$, with $\sigma(F_o)$ being derived from $\sigma(I_o) = [\sigma^2(I_o) + (0.04I_o)^2]^{1/2}$. The weighted residual is defined as $R_w = (\Sigma w \Delta^2 / \Sigma w F_o^2)^{1/2}$. Atomic scattering factors and anomalous dispersion parameters were from International Tables for X-ray Crystallography [13]. Structure solution was by MULTAN 80 [14], and refinement used BLOCKLS, a local version of ORFLS [15]. Cyber 172 and IBM3090 computers were used for all calculations.

Results and Discussion

A perspective diagram [16] of the structure is shown in Fig. 1. Atomic parameters, bond lengths and bond angles are given in Tables 1, 2 and 3, respectively. The complex is a centrosymmetric N-oxidebridged dimer. Each cobalt(II) is octahedrally coordinated by two *cis*-N-bonded thiocyanates, by an ONN-bonded poph molecule, and by a bridging N-oxide oxygen. The octahedral coordination to the cobalt is rather distorted, the X-Co-Y angles being in the ranges 72.0-105.8(3)° and 147.2-171.3(2)°. The Co-N distances for the coordinated thiocyanates are 1.984(7) and 2.045(7) Å, similar to corresponding values of 2.036-2.116 Å found for other cobalt(II) systems [17-21].

No previous structures of complexes with poph have been reported. The structure is known [22], however, of the five-coordinate complex β -[Co(paphy)Cl₂], in which paphy is 2-pyridinecarboxaldehyde 2'-pyridinylhydrazone (**X**).

The ligand paphy is the NNN-donor of which poph is the N-oxide derivative. In $[Co(poph)(NCS)_2]_2$ the Co-N(4) and Co-N(2) distances, involving the pyridine and hydrazone nitrogens, are 2.086(6) and 2.142(6) Å, respectively; the corresponding distances in β -[Co(paphy)Cl₂] are 2.114(14) and 2.082(9) Å. The N(2)-Co-N(4) chelate angle of 76.1(2)° in [Co(poph)(NCS)_2]_2 is close to the corresponding angle of 75.0(5)° in β -[Co(paphy)Cl₂].

The dimeric structure of $[Co(poph)(NCS)_2]_2$ involves a base to base combination of tetragonal pyramidal Co(poph)(NCS)₂ entities. In each of these entities the poph ligand and one coordinated thiocyanate produce the basal planar coordination. The bridging Co-O bond is 'out-of-ligand-plane', i.e. at right angles to the plane of the poph molecule. The Co-O distances are 2.028(5) Å for the 'inligand-plane' bond and 2.460(5) Å for the 'out-ofligand-plane' bridging bond. The 'in-ligand-plane'

Fig. 1. A perspective drawing of $[Co(poph)(NCS)_2]_2$ with atom labelling.

TABLE 1. Non-hydrogen atomic parameters^a

	x	у	z	B _{eq}
Co	0.4225(1)	0.6669(1)	0.4681(1)	2.32(4)
S(1)	0.0887(2)	0.8877(3)	0.4809(2)	4.01(11)
S(2)	0.7859(3)	0.8974(3)	0.7589(2)	6.84(16)
0	0.4012(5)	0.4806(5)	0.5081(3)	2.41(23)
N(1)	0.2765(6)	0.4314(6)	0.4643(4)	2.52(31)
N(2)	0.2868(6)	0.5803(6)	0.3191(4)	2.35(31)
N(3)	0.2964(6)	0.6385(6)	0.2489(4)	2.77(29)
N(4)	0.4564(6)	0.7804(6)	0.3794(4)	2.42(29)
N(5)	0.2621(7)	0.7569(8)	0.4513(5)	3.50(35)
N(6)	0.5680(7)	0.7492(7)	0.6014(5)	3.15(33)
C(1)	0.2496(9)	0.3815(9)	0.5262(6)	3.88(47)
C(2)	0.1270(10)	0.3247(11)	0.4889(7)	4.91(50)
C(3)	0.0314(10)	0.3163(11)	0.3853(8)	5.63(4)
C(4)	0.0579(9)	0.3653(9)	0.3220(6)	4.19(11)
C(5)	0.1799(8)	0.4270(8)	0.3614(6)	2.93(16)
C(6)	0.2004(8)	0.4883(9)	0.2907(6)	2.85(23)
C(7)	0.3857(8)	0.7423(8)	0.2809(5)	2.32(31)
C(8)	0.4107(9)	0.7990(8)	0.2161(5)	3.25(31)
C(9)	0.5050(10)	0.8988(9)	0.2539(6)	3.52(29)
C(10)	0.5757(10)	0.9420(9)	0.3542(6)	4.07(29)
C(11)	0.5455(9)	0.8801(9)	0.4130(6)	3.62(35)
C(12)	0.1862(9)	0.8096(9)	0.4611(5)	3.21(33)
C(13)	0.6588(9)	0.8116(9)	0.6675(6)	3.15(47)

^ae.s.d.s in parentheses. B_{eq} (A²) is the isotropic equivalent of the anisotropic temperature factor.

Co-O bond length is similar to the cobalt N-oxide Co-O distance of 2.061(1) Å in the complex $[Co(pco_2o)_2(H_2O)_2]$ of 2-pyridinecarboxylic acid 1-oxide (Hpco_2o) [23].

TABLE 2. Bond lengths (Å)^a

Atoms	Distance
<u>Co-0</u>	2.028(5)
Co-N(2)	2.142(6)
Co-N(4)	2.086(6)
Co-N(6)	1.984(7)
Co-N(5)	2.045(7)
Co-0'	2.460(5)
C(1)-C(2)	1.370(11)
C(2) - C(3)	1.370(12)
C(3) - C(4)	1.365(11)
C(4) - C(5)	1.377(11)
C(5) - N(1)	1.361(9)
N(1) - C(1)	1.351(9)
N(1)-O	1.342(7)
C(5)-C(6)	1.472(10)
C(6) - N(2)	1.260(9)
N(2) - N(3)	1.367(7)
N(3)-C(7)	1.361(9)
C(7) - C(8)	1.403(9)
C(8) - C(9)	1.359(11)
C(9) - C(10)	1.391(11)
C(10) - C(11)	1.381(11)
C(11) - N(4)	1.326(10)
N(4)C(7)	1.352(8)
N(5)-C(12)	1.174(10)
C(12) - S(1)	1.633(9)
N(6) - C(13)	1.161(9)
C(13)-S(2)	1.610(9)

^ae.s.d.s in parentheses. ' indicates the symmetry transformation 1 - x, 1 - y, 1 - z.

The pyridine N-oxide and pyridine groups are not co-planar in poph. Rotation occurs about the C(5)-C(6) bond, tilting the pyridine N-oxide group relative to the pyridinehydrazone segment so that the N-oxide oxygen moves towards the cobalt in the adjacent Co(poph)(NCS)₂ entity. The extent of rotation is illustrated by the N(1)-C(5)-C(6)-N(2) torsional angle which is 21.7(13)°. No other significant distortion is present in the poph molecule.

An alternative to the 'out-of-ligand-plane' bridging in the structure would be the 'in-ligand-plane' bridging illustrated in XI. One reason for 'out-of-ligandplane' bridging may be that there is less steric interaction between the poph molecules than would

TABLE 3. Interatomic angles ([°])^a

Atoms	Angle
O-Co-N(2)	81.1(2)
0-Co-N(4)	147.2(2)
O-Co-N(5)	97.3(2)
O-Co-N(6)	102.8(2)
N(2) - Co - N(4)	76.1(2)
N(2)-Co-N(5)	89.9(2)
N(2)-Co-N(6)	171.3(2)
N(4) - Co - N(5)	105.8(3)
N(4) - Co - N(6)	97.0(2)
N(5)-Co-N(6)	97.3(3)
0-Co-0'	72.0(2)
O'-Co-N(2)	87.0(2)
O'-Co-N(4)	83.5(2)
O'-Co-N(5)	169.2(2)
O' - Co - N(6)	86.8(2)
Co-O-Co'	108.0(2)
O - N(1) - C(1)	117.7(6)
O - N(1) - C(5)	122.4(6)
C(1) - N(1) - C(5)	119.9(7)
N(3)-N(2)-C(6)	119.0(6)
N(2) - N(3) - C(7)	117.5(6)
C(7) - N(4) - C(11)	118.4(6)
N(1)-C(1)-C(2)	122.2(8)
C(1)-C(2)-C(3)	117.8(8)
C(2) - C(3) - C(4)	120.5(8)
C(3)-C(4)-C(5)	120.5(8)
N(1)-C(5)-C(4)	119.0(7)
N(1)-C(5)-C(6)	122.2(7)
C(4) - C(5) - C(6)	118.8(7)
N(2)-C(6)-C(5)	121.5(7)
N(3)-C(7)-N(4)	117.1(6)
N(3) - C(7) - C(8)	120.9(6)
N(4) - C(7) - C(8)	121.8(7)
C(7)-C(8)-C(9)	118.1(7)
C(8) - C(9) - C(10)	120.8(7)
C(9)-C(10)-C(11)	117.3(8)
N(4)-C(11)-C(10)	123.5(7)
S(1)-C(12)-N(5)	176.5(7)
S(2)-C(13)-N(6)	179.3(8)
N(1)-O-Co	119.4(4)
N(1)-O-Co'	119.9(4)
C(6)-N(2)-Co	127.8(5)
N(3)-N(2)-Co	113.2(5)
C(7)-N(4)-Co	116.0(5)
C(11)-N(4)-Co	125.6(5)
C(12)-N(5)-Co	167.5(6)
C(13)-N(6)-Co	166.0(6)

ae.s.d.s in parentheses. ' indicates the symmetry transformation 1 - x, 1 - y, 1 - z.

occur for 'in-ligand-plane' bridging. 'Out-of-ligandplane' bridged structures are possible for the other N-oxide-bridged complexes of poph and poqh mentioned earlier, but the alternative 'in-ligand-plane' bridging arrangement cannot be ruled out. The infrared spectrum of $[Co(poph)(NCS)_2]_2$ contains two thiocyanate $\nu(CN)$ bands, at 2094 and 2068 cm⁻¹. This is in keeping with the 'out-of-ligandplane' bridged structure, with the anions in nonequivalent environments. However, single ν (CN) bands were found [10] for Ni(poph)(NCS)₂ and Ni(poqh)(NCS)₂•0.5H₂O; this is consistent with 'in-ligand-plane' bridged structures with the anions in equivalent environments.

The X-ray powder diffraction spectrum of the sample of $[Co(poph)(NCS)_2]_2$, prepared by Landers and Phillips, agrees with the spectrum calculated from the structure in this paper, showing that all of the sample of Landers and Phillips has the $[Co(poph)(NCS)_2]_2$ structure [24]. Landers and Phillips [10] found that [Co(poph)(NCS)₂]₂ has a μ_{eff} value of 4.32 BM at 298 K, decreasing to 3.86 BM at 89 K. The decrease in μ_{eff} of 0.46 BM from 298 to 89 K, and the associated Weiss θ value of -37 K, contrast with results for a range of complexes of the type $[Co(pxo)_2X_2]$ and $[Co(pco)_2X_2]$, with the N-oxide ligands II and III, to which monomeric structures were assigned [7, 8]. These complexes have μ_{eff} values of 4.99-4.44 BM at 298 K decreasing by 0.09-0.23 BM when cooled to 89 K, and θ values of -2 to -14 K. Landers and Phillips interpreted the greater decrease in μ_{eff} and the more negative θ value of $[Co(poph)(NCS)_2]_2$, compared to values for monomeric complexes, as indicating antiferromagnetism associated with N-oxide bridging [10]. The structure of $[Co(poph)(NCS)_2]_2$ is the first confirmation of this criterion for N-oxide bridging in cobalt(II) complexes, which was applied to several systems [7, 9, 10].

This paper supports the conclusion that poph produces N-oxide-bridged complexes. Varying degrees of magnetic interaction were found with the poph and poqh complexes [10]. We are, therefore, determining X-ray structures of bridged poph and poqh complexes in order to see whether magnetic interaction may be correlated with bridging geometry in these complexes.

References

- 1 N. M. Karayannis, L. L. Pytlewski and C. M. Mikulski, Coord. Chem. Rev., 11 (1973) 93.
- 2 M. Melnik, Coord. Chem. Rev., 42 (1982) 259.
- 3 S. V. Nipankar, V. R. Marathe and C. R. Kanekar, *Indian J. Chem.*, 10 (1972) 649.
- 4 L. C. Nathan, C. A. Doyle, A. M. Mooring, D. C. Zapien, S. K. Larsen and C. G. Pierpoint, *Inorg. Chem.*, 24 (1985) 2763.
- 5 A. E. Landers and D. J. Phillips, *Inorg. Chim. Acta*, 25 (1977) L39.
- 6 A. E. Landers and D. J. Phillips, *Inorg. Chim. Acta*, 51 (1981) 109.
- 7 A. E. Landers and D. J. Phillips, *Inorg. Chim. Acta*, 59 (1982) 41.
- 8 A. E. Landers and D. J. Phillips, *Inorg. Chim. Acta*, 59 (1982) 125.
- 9 A. E. Landers and D. J. Phillips, *Inorg. Chim. Acta*, 74 (1983) 43.

- 10 A. E. Landers and D. J. Phillips, Inorg. Chim. Acta, 86 (1984) 77.
- 11 M. Antolovich, D. J. Phillips and A. D. Rae, J. Chem. Soc., Chem. Commun., (1984) 582.
- 12 M. Antolovich, D. J. Phillips and A. D. Rae, *Inorg. Chim.* Acta, 156 (1989) 189.
- 13 J. A. Ibers and W. C. Hamilton (eds.), International Tables for X-Ray Crystallography, Vol. 4, Kynoch Press, Birmingham, U.K., 1974.
- 14 P. Main, MULTAN 80, University of York, U.K., 1980.
- 15 W. R. Busing, K. O. Martin and H. A. Levy, ORFLS, Oak Ridge National Laboratory, TN, U.S.A., 1962.
- 16 C. K. Johnson, ORTEP-II, Oak Ridge National Laboratory, TN, U.S.A., 1976.-

- 17 A. Mangia, M. Nardelli and G. Pelizzi, Acta Crystallogr., Sect. B, 30 (1974) 487.
- 18 H. Hartl and I. Brudgam, Acta Crystallogr., Sect. B, 36 (1980) 162.
- 19 G. D. Andreetti and P. Sgarabotto, Cryst. Struct. Commun., 1 (1972) 55.
- 20 B. M. Foxman and H. Mazurek, Inorg. Chim. Acta, 59 (1982) 231.
- 21 M. V. Veidis, B. Dockum, F. F. Charron, W. M. Reiff and T. F. Brennan, *Inorg. Chim. Acta*, 53 (1981) L197.
- 22 M. Gerloch, J. Chem. Soc. A, (1966) 1317.
- 23 P. Knuuttila, Acta Chem. Scand., Ser. A, 36 (1982) 767.
 24 A. E. Landers and D. J. Phillips, unpublished observations.