A New Route to the Ni(O) 'Cradle' Complex $Ni_2(\mu$ -CO)(CO)₂(PPh₂CH₂PPh₂)₂: μ -CO Ligand and Metal-centered Reactivity

JIN-KANG GONG and CLIFFORD P. KUBIAK* Department of Chemistry, Purdue University, West Lafayette, IN 47907 (U.S.A.)

(Received February 10, 1989; revised April 17, 1989)

We report a new synthesis of the complex Ni₂(μ -CO)(CO)₂(dppm)₂ (1) (dppm = bis(diphenylphosphino(methane)) and present evidence for both metal-centered and μ -carbonyl oxygen atom reactivity. The first binuclear nickel carbonyl derivatives of the type Ni₂(CO)₃(P^PP)₂, where P^PP is a diphosphine ligand, were synthesized in 1966 [1]. Since then, several diphosphine ligands have been reported to form complexes of this general class [2, 3]. Osborn *et al.* [4] reported the surprising formation of the tripod phosphine complex Ni(CO)₂(HC(PPh₂)₃).

We reported that 1 is also formed by the reaction of the corresponding isocyanide complex $Ni_2(\mu$ -CNMe)(CNMe)₂(dppm)₂ with CO₂ in the liquid phase [5] or photochemically with CO₂ in the gas phase [6]. We report herein a straightforward and convenient synthesis of 1 which follows eqn. (1).

$$2Ni(COD)_{2} + 2dppm + 3CO \xrightarrow[toluene]{toluene} Ni_{2}(\mu-CO)(CO)_{2}(dppm)_{2} + 4COD \quad (1)$$

The reversible formation of a μ -CO adduct of 1 with AlR₃ (R = Me, Et) is also described. In the case of reaction of 1 with Brönsted acids, the Ni atoms are found to react in preference to the μ -CO ligand to form a μ -hydride di-nickel complex.

Experimental

All manipulations were performed under a N_2 atmosphere using Schlenk techniques. ¹H NMR and

0020-1693/89/\$3.50

 $^{31}P\{^{1}H\}$ NMR spectra were recorded on a Varian XL-200 spectrophotometer. ^{1}H and ^{31}P NMR chemical shifts were referenced to TMS and 85% $H_{3}PO_{4}$ respectively.

Freshly prepared Ni(COD)₂ [7, 8] (COD = 1,5cyclooctadiene) was dissolved in THF to which 1 eq dppm was then added. The mixture was stirred for 15 min and the color changed from yellow to yellow-orange. CO gas (1.5 eq) was then added by syringe. The mixture was stirred for 30 min and stored at -20 °C overnight. The reaction volatiles were collected in a liquid N₂ cooled trap between the reaction flask and vacuum line. Any Ni(CO)₄ was disposed of by treatment of the trap distillate with bromine water. The remaining yellow solid was filtered, washed with ether, and dried under vacuum to obtain 1 in 89% yield.

$Ni_{2}(\mu-CO)(CO)_{2}(dppm)_{2}(1)$

Complex 1 was characterized by FT-IR, ¹H and ³¹P{¹H} NMR. IR (KBr): ν (CO) 1970, 1948 and 1781 cm⁻¹. ¹H NMR (CD₂Cl₂): 2.61(m, 2H), 3.42(m, 2H), 6.92-7.38(m, 40H). ³¹P{¹H} NMR (CH₂Cl₂): δ 22.93(s). These data are in excellent agreement with previously reported values [4, 5]. The X-ray structure of 1 was recently reported [4].

$Ni_{2}(\mu - CO)(AlMe_{3})(CO)_{2}(dppm)_{2}(2)$

Complex 2 was prepared by addition of AlMe₃ to a toluene solution of 1 and was characterized by FT-IR and ³¹P{¹H} NMR. IR (toluene): ν (CO) = 1998, 1981 and 1646 cm⁻¹. ³¹P{¹H} NMR (toluene): δ 24.09(s).

$[Ni_{2}(\mu-CO)(\mu-H)(CO)_{2}(dppm)_{2}][PF_{6}](3)$

Complex 3 was prepared as a bright yellow crystalline solid by addition of HPF₆ to a toluene solution of 1, and was characterized by FT-IR, ¹H and ³¹P{¹H} NMR. IR (KBr): ν (CO) = 2041 and 1867 cm⁻¹. ¹H NMR (CD₂Cl₂): δ 7.1–8.0(m, 40H), 3.12(m, 2H), 3.3(m, 2H) and –11.0(p, 1H). ³¹P{¹H} NMR (CH₂-Cl₂): δ 31.34(s). *Anal.* Calc. for C₅₃H₄₅O₃P₅Ni₂F₆. C, 56.98; H, 4.03. Found: C, 56.50; H, 4.10%.

Results and Discussion

The reaction of Ni(COD)₂ with dppm and CO in toluene represents a convenient synthesis of complex 1. Yields approach 90% and the preparation does not require directly handling of Ni(CO)₄ or the use of hydridic reducing agents [9].

As part of our studies, we have surveyed the reactivity of 1 with Lewis and Brönsted acids. In earlier studies, we found that the μ -isocyanide ligand of the complex Ni₂(μ -CNMe)(CNMe)₂(dppm)₂

© Elsevier Sequoia/Printed in Switzerland

^{*}Author to whom correspondence should be addressed. Research Fellow of the Alfred P. Sloan Foundation, 1987– 1989.

possesses unusually high N-atom Lewis basicity, and readily undergoes N-protonation or N-alkylation [10]. The μ -CO ligand of 1, however, behaves only as a weak base. The reaction of 1 with excess AlR₃ (R = Me, Et) in toluene leads to the appearance of ν (CO) bands at 1998, 1981 and 1646 cm⁻¹. The pure adduct Ni₂(μ -CO(AlMe₃))(CO)₂(dppm)₂ [1] can be prepared by removal under vacuum of toluene solvent and excess AlMe₃. The low frequency bridging ν (CO) band of 2 suggests the complex exists as a μ -CO(AlMe)₃ adduct. Similar adducts of Fe and Ru carbonyl clusters have been reported by Shriver [11, 12]. Complexes 1 and 2 exist in equilibrium in toluene solution (eqn. (2)).

Fig. 1. FT-IR spectra in the ν (CO) region showing (a) Ni₂(μ -CO)(CO)₂(dppm)₂ (1); (b) Ni₂(μ -CO(AlMe₃))(CO)₂(dppm)₂ (2); and (c) an equilibrium mixture of 1 and 2 resulting from the dissolution of 2 in toluene.

Dissolution of pure 2 in toluene produces $\nu(CO)$ bands characteristic of both 1 and 2. Figure 1 presents the FT-IR spectra in the $\nu(CO)$ region of (a) pure 1, (b) pure 2, and (c) an equilibrium mixture of 1 and 2 produced upon dissolution of 2 in toluene.

In contrast to the μ -CO O-atom basicity of 1 with respect to AlR₃ (R = Me, Et), reaction of 1 with protons leads to metal-centered reactivity. The reaction of 1 with HPF₆ in toluene leads to the complex $[Ni_2(\mu$ -CO)(μ -H)(CO)_2(dppm)_2][PF₆] (3). Complex 3 has been characterized by IR, ¹H and ³¹P{¹H} NMR and elemental analysis. A high frequency bridging or semibridging ν (CO) band is evident at 1867 cm⁻¹. The ¹H NMR reveals a single hydride resonance, centered at -11.0 ppm and symmetrically coupled to all four phosphorus nuclei ($J_{P-H} = 27$ Hz). The hydride ¹H NMR spectrum and proposed structure of 3 are presented in Fig. 2.

Fig. 2. ¹H NMR of $[Ni_2(\mu-CO)(\mu-H)(CO)_2(dppm)_2][PF_6]$ (3) in the hydride region.

In summary, a convenient synthesis of 1 from $Ni(COD)_2$, dppm and CO has been developed. Complex 1 exhibits both μ -CO-centered and metal-centered reactivity with AlR₃ (R = Me, Et) and HPF₆ respectively.

Acknowledgement

This work was supported by the National Science Foundation (CHE-8707963).

References

- 1 A. B. Burg and R. A. Sinclair, J. Am. Chem. Soc., 88 (1966) 5354.
- 2 A. B. Burg and R. A. Sinclair, Inorg. Chem., 10 (1968) 2160.
- 3 J. Donohue and O. Einspahr, Inorg. Chem., 7 (1973) 1839.

- 5 D. L. DeLaet, R. del Rosario, P. E. Fanwick and C. P. Kubiak, J. Am. Chem. Soc., 109 (1987) 754.
- 6 F. R. Lemke, D. L. DeLaet, J. Gao and C. P. Kubiak, J. Am. Chem. Soc., 110 (1988) 6904.
- 7 G. Franco and S. Giuseppe, J. Organomet. Chem., 114 (1976) 339.
- 8 R. A. Schunn, Inorg. Synth., 15 (1974) P5.
- 9 D. G. Holah, A. N. Hughes, H. A. Mirza and J. D. Thompson, *Inorg. Chim. Acta*, 126 (1987) L7. 10 D. L. DeLaet, P. E. Fanwick and C. P. Kubiak, *Organo-*
- metallics, 5 (1986) 1807.
- D. F. Shriver, J. Organomet. Chem., 94 (1975) 259.
 D. F. Shriver and A. Alich, Coord. Chem. Rev., (1972) 8.