M. E. SABIR ALI, M. AZAD MALIK and BARRY C. SMITH*

Department of Chemistry, Birkbeck College (University of London), Gordon House, 29 Gordon Square, London WC1H OPP (U.K.)

(Received February 28, 1989)

Tellurium tetrachloride reacts with cyclohexene in boiling carbon tetrachloride to give 2-chlorocyclohexyltellurium trichloride [1-3]. A preliminary X-ray crystal investigation by Cameron [4] established that the cyclohexyl group contains 1,2-transsubstituents, consistent with addition of TeCl₃⁺ and Cl⁻ to the double bond. Some reactions of tellurium-(IV) halides with cycloalkenes in the presence of alcohols are reported here.

Experimental

Alkoxycycloalkyltellurium Trihalides

In a typical reaction, cyclohexene (1.60 g, 19.5 mmol) was added to tellurium tetrachloride (5.00 g, 18.6 mmol) in carbon tetrachloride (50 cm^3) and alcohol (60 mmol). The mixture was boiled under reflux (2 h), cooled, filtered to remove traces of elemental tellurium, shaken with charcoal, and filtered. Evaporation under reduced pressure and recrystallisation of the product from light petroleum

^{*}Author to whom correspondence should be addressed.

TABLE 1. Analysis of al	koxycycloalkyltellurium	trihalides
-------------------------	-------------------------	------------

(boiling point 40–60 $^{\circ}$ C) gave colourless 2-alkoxytrans-cycloalkyltellurium trichlorides or yellow 2-alkoxy-trans-cyclohexyltellurium tribromides. Preparative and analytical data are summarized in Table 1.

Results and Discussion

Cyclohexene or cycloheptene reacts with tellurium tetrachloride or tellurium tetrabromide and an alcohol in carbon tetrachloride to give 2-alkoxycyclo-alkyltellurium trihalides. The X-ray crystal structure of 2-ethoxy-*trans*-cycloheptyltellurium tribromide shows two distinct forms [5]. Both have *trans*-equatorial substituents, consistent with the 1,2-*trans*-addition of TeBr₃⁺ and OEt⁻ groups. Tellurium has a pseudo-octahedral configuration. Two bromides occupy *trans*-octahedral positions, the third bromine is *trans* to the co-ordinated oxygen, and a pair of non-bonding electrons is presumed to occupy the site *trans* to carbon.

Mass Spectra

The mass spectra of cyclohexene and cycloheptene contain base peaks corresponding to ions of relative molecular mass 81 and 95 respectively. The mass spectra of alkoxycycloalkyltellurium trihalides can be distinguished at a glance. Base peaks occur at M_r 81 and 95 for derivatives of cyclohexene and cycloheptene respectively. Molecular ion peaks correspond to the relative molecular mass minus the relative atomic mass of one halogen: M_r 313, 327 and 341 for methoxy-, ethoxy- and propanoxy-cyclohexyltellurium trichlorides; M_r 401, 415 and 429 for the corresponding tribromides; and M_r 327, 341 and 355

Compound	Yield (%)	Melting point (°C)	Found (%)			Formula	Calculated (%)			
			С	н	Halogen		C	н	Halogen	
CH ₃ OC ₆ H ₁₀ TeCl ₃	77	120-121	23.98	3.69	30.85	C7H13Cl3OTe	24.22	3.77	30.64	
C2H5OC6H10TeCl3	63	97-98	26.80	4.18	29.21	C ₈ H ₁₅ Cl ₃ OTe	26.60	4.18	29.45	
n-C ₃ H ₇ OC ₆ H ₁₀ TeCl ₃	37	67-68	28.98	4.49	28.44	C ₉ H ₁₇ Cl ₃ OTe	28.81	4.56	28.35	
i-C ₃ H ₇ OC ₆ H ₁₀ TeCl ₃	35	106 - 108	29.48	4.59	28.09	C ₉ H ₁₇ Cl ₃ OTe	28.81	4.56	28.35	
CH ₃ OC ₆ H ₁₀ TeBr ₃	64	142-143	17.32	2.67	49.99	C7H13Br3OTe	17.50	2.73	49.89	
C2H5OC6H10TeBr3	65	119-120	19.59	3.07	47.99	C8H15Br3OTe	19.43	3.06	48.47	
n-C ₃ H ₇ OC ₆ H ₁₀ TeBr ₃	33	109-110	21.37	3.32	46.99	C ₉ H ₁₇ Br ₃ OTe	21.25	3.37	47.14	
i-C ₃ H ₇ OC ₆ H ₁₀ TeBr ₃	32	124-125	21.27	3.39	46.89	C ₉ H ₁₇ Br ₃ OTe	21.25	3.37	47.14	
CH ₃ OC ₇ H ₁₂ TeCl ₃	51	103-104	26.61	4.17	29.74	C ₈ H ₁₅ Cl ₃ OTe	26.60	4.18	29.45	
C2H5OC7H12TeCl3	41	75-76	29.07	4.57	28.26	C ₉ H ₁₇ Cl ₃ OTe	28.81	4.56	28.35	
n-C ₃ H ₇ OC ₇ H ₁₂ TeCl ₃	84	oil	31.07	4.90	27.49	C ₁₀ H ₁₉ Cl ₃ OTe	30.86	4.92	27.33	
i-C ₃ H ₇ OC ₇ H ₁₂ TeCl ₃	49	93	30.97	4.98	27.37	C ₁₀ H ₁₉ Cl ₃ OTe	30.86	4.92	27.33	
$C_2H_5OC_7H_{12}TeBr_3$	53	76-78	21.31	3.37	46.88	C ₉ H ₁₇ Br ₃ OTe	21.25	3.37	47.13	

0020-1693/89/\$3.50

© Elsevier Sequoia/Printed in Switzerland

for methoxy-, ethoxy- and propanoxy-cycloheptyltellurium trichlorides.

Fragments corresponding to cycloalkene plus alkoxy occur at M_r 113 or 127 (OMe), 127 or 141 (OEt), and 141 or 155 (OPrⁿ and OPrⁱ). Common fragments occur at M_r 130 (Te); 165 or 209 (TeX); 200 or 288 (TeX₂); 247 or 256 (C₆H₁₀TeCl or C₇H₁₂TeCl); 278, 292 or 306 (ROC₆H₁₀TeCl); and 292, 306 or 320 (ROC₇H₁₂TeCl).

Proton NMR Spectra

The ¹H NMR spectra of cyclohexene and cycloheptene contain methylene proton multiplets in the region δ 1.5 to 2.0 ppm and alkenic proton bands near δ 5.7 ppm. The relevant data for alkoxycycloalkyltellurium trihalides are summarised in Table 2.

The protons which were alkenic originally (A and B) appear as well-resolved multiplets. The H--CTe protons (A) of alkoxycyclohexyltellurium trihalides and alkoxycycloheptyltellurium trichlorides show eight- and six-line signals respectively. The differences depend on whether trans-A-B coupling is less than trans-A-C coupling and greater than cis-A-D coupling, or whether trans-A-C and cis-A-D coupling are equal but less than trans-A-B coupling. Thus the signals consist of doublets of doublets of doublets or triplets of doublets. The H-COR protons (B) of these cyclohexyl and cycloheptyl derivatives appear at higher field as six-line signals in which trans-A-B and trans-B-E coupling are equal and greater than cis-B-F coupling. Thus these six-line signals appear as doublets of triplets. The splitting patterns of A and B protons of 2-ethoxycyclohexyltellurium tribromide and 2-ethoxycycloheptyltellurium trichloride appear as Figs. 1 and 2 respectively.

The α -methylene protons of ethanoxy and n-propanoxy derivatives are non-equivalent and appear as two sets of eight lines (quartets of AB signals) and two sets of six lines (triplets of AB signals) respectively. Similarly, the isopropanoxy derivatives contain non-equivalent methyl groups which appear as two doublets while the α -proton appears as a heptet.

Carbon-13 NMR Spectra

The ¹³C NMR spectra of the alkoxycycloalkyltellurium trihalides contain lines corresponding to each of the ring carbons and each of the alkoxy carbons except in the case of isopropanoxycycloheptyltellurium trichloride, where the two methyl carbons produce a single line of double intensity. Chemical shift data are summarised in Table 3.

The C--Te and C-OR signals in alkoxycycloalkyltellurium trihalides appear at low field between δ 77 and 81 ppm. Changes from trichloride to tribromide in the cyclohexyl series cause the C--Te signals to shift to higher field. Other ring carbon atoms appear

Fig. 1. ¹H NMR signals for A and B protons in 2-ethoxytrans-cyclohexyltellurium tribromide.

in the range δ 21–38 ppm. Chemical shifts of alkoxy carbons depend on their proximity to oxygen: α 56–75; β 15–25; γ c. 10 ppm.

Fig. 2. ¹H NMR signals for A and B protons in 2-ethoxytrans-cycloheptyltellurium trichloride.

TABLE 2. ¹ H NMR dat	ta for alkoxyc	:ycloal k yltellur	ium trihalides	s in CDCl ₃								
Сотроила	HCTe(A) δ (ppm)	HCOR(B) § (ppm)	³ J(A–D) (Hz)	³ <i>J</i> (A–C) (Hz)	³ <i>J</i> (A-B) ³ <i>J</i> (B-E) (Hz)	³ J(B-F) (Hz)	α δ (ppm)	β δ (ppm)	γ δ (ppm)	${}^{2}J(\alpha_{1}-\alpha_{2})$ (Hz)	${}^{3}J_{(\alpha-eta)}$ (Hz)	$^{3}J(\beta-\gamma)$ (Hz)
CH ₃ OC ₆ H ₁₀ TeCl ₃	4.43	4.15	3.7	12.3	10.9	4.0	3.51					
C2H5OC6H10TeCl3	4.43	4.25	3.7	12.1	10.7	4.2	3.87 3.58	1.24		9.2	7.0	
n-C ₃ H ₇ OC ₆ H ₁₀ TeCl ₃	4.45	4.23	3.7	12.2	10.8	4.1	3.75 3.49	1.61	0.95	0.6	9.9	7.1
i-C ₃ H ₇ OC ₆ H ₁₀ TeCl ₃	4.41	4.34	3.6	12.0	10.7	3.8	3.98	1.24 1.23			6.1	
CH ₃ OC ₆ H ₁₀ TeBr ₃	4.60	4.29	3.9	12.3	10.8	4.1	3.53					
C2H5OC6H 10TeBr3	4.57	4.36	3.7	12.4	10.9	4.0	3.86 3.57	1.22		9.1	7.0	
n-C ₃ H ₇ OC ₆ H ₁₀ TeBr ₃	4.61	4.35	3.8	12.4	10.9	3.8	3.74 3.48	1.63	0.95	8.9	6.5	7.0
i-C ₃ H ₇ OC ₆ H ₁₀ TeBr ₃	4.56	4.44	3.8	12.2	10.8	3.9	3.94	1.24 1.22			6.1	
CH ₃ OC ₇ H ₁₂ TeCl ₃	4.74	4.14	8.5		10.3	4.0	3.61					
C2H5OC7H12TeCl3	4.72	4.24	8.5		10.3	4.0	3.92 3.50	1.29		8.8	7.0	
n-C ₃ H ₇ OC ₇ H ₁₂ TeCl ₃	4.76	4.24	8.5		10.2	3.8	3.73 3.56	1.61	66.0	8.7	6.7	7.4
i-C ₃ H ₇ OC ₇ H ₁₂ TeCl ₃	4.70	4.40	8.5		10.1	4.1	4.12	1.33 1.30			6.2	

Inorganica Chimica Acta Letters

Compound	δ (ppm)) for ring ca	δ (ppm) for alkoxy carbons							
	СТе	COR						α	β	γ
CH ₃ OC ₆ H ₁₀ TeCl ₃	80.50	80.13	32.32	27.70	25.89	23.23		56.87		
C ₂ H ₅ OC ₆ H ₁₀ TeCl ₃	79.89	79.26	33.00	27.48	25.69	23.16		65.25	15.19	
n-C ₃ H ₇ OC ₆ H ₁₀ TeCl ₃	80.33	79.44	32.98	27.51	25.74	23.18		71.13	22.99	10.50
i-C ₃ H ₇ OC ₆ H ₁₀ TeCl ₃	79.79	77.76	33.97	27.36	25.49	23.18		71.73	23.67	
									22.29	
CH ₃ OC ₆ H ₁₀ TeBr ₃	76.71	81.02	32.26	28.16	27.61	23.51		57.11		
C ₂ H ₅ OC ₆ H ₁₀ TeBr ₃	76.46	79.93	32.93	27.87	27.29	23.45		65.62	15.25	
n-C ₃ H ₇ OC ₆ H ₁₀ TeBr ₃	76.89	80.03	32.89	27.89	27.33	23.44		71.40	23.05	10.55
i-C ₃ H ₇ OC ₆ H ₁₀ TeBr ₃	76.28	78.01	34.04	27.79	27.08	23.52		72.03	23.75	
									22.57	
CH ₃ OC ₇ H ₁₂ TeCl ₃	82.29	83.57	33.00	27.86	25.08	24.64	24.41	58.58		
C ₂ H ₅ OC ₇ H ₁₂ TeCl ₃	81.66	82.25	33.44	27.94	25.01	24.56	24.48	67.65	14.33	
n-C ₃ H ₇ OC ₇ H ₁₂ TeCl ₃	81.90	82.17	33.39	27.90	25.40	24.98	24.47	73.28	23.91	10.44
i-C ₃ H ₇ OC ₇ H ₁₂ TeCl ₃	81.01	79.38	33.98	27.93	25.00	23.00	21.08	74.01	24.43 ^a	

TABLE 3. ¹³C NMR data for alkoxycycloalkyltellurium trihalides in CDCl₃

^aDouble intensity.

References

- 1 M. Moura Campos and N. Petragnani, Tetrahedron Lett., 6 (1959) 11.
- 2 M. Ogawa, Bull. Chem. Soc. Jpn., 41 (1968) 3031; Chem. Abstr., 70 (1969) 96102d.
- 3 M. Ogawa and R. Ishioka, Bull. Chem. Soc. Jpn., 43 (1970) 496; Chem. Abstr., 73 (1970) 24972b.
- 4 T. S. Cameron, personal communication.
- 5 T. S. Cameron, R. B. Amero and R. E. Cordes, Cryst. Struct. Commun., 9 (1980) 543.