The Crystal and Molecular Structure of $[(C_4H_9)_4N]_2[Mo_2O_6(C_5H_4NCO_2)_2]$, a Complex Exhibiting the $[Mo_2O_6]^0$ Core

QIN CHEN, SUNCHENG LIU and JON ZUBIETA*

Department of Chemistry, State University of New York at Albany, Albany, NY 12222 (U.S.A.) (Received April 6, 1989)

Polyoxomolybdate—carbonyl interactions are characterized by carbonyl insertion into a molybdenum—oxygen bond [1-3]. The synthesis of organo-oxomolybdates with acetyl [1], with diacetyl [2], and with diketal structures [3], depending upon the nature of the organic substrate, have been discussed in terms of acid—base pair binding sites and as models for substrate binding sites on solid oxide surfaces [4].

That the products of such molybdate-carbonyl reactions depend intimately upon the nature of the organic precursor is demonstrated by the isolation of the oxalatodimolybdate $[Mo_2O_4Cl_4(C_2O_4)]^{2-}$ from the reaction of $[Mo_8O_{26}]^{4-}$ with dichloroglyoxal [3] and the formation of the oxalatooctamolybdate $[Mo_8O_{16}(OCH_3)_8(C_2O_4)]^{2-}$ from the reaction of $[Mo_8O_{26}]^{4-}$ with rhodizonic acid [5]. These observations suggest that ligand dissociation will occur, subsequent to carbonyl insertion. In order to examine the generality of carbonyl insertion coupled with ligand dissociation in polyoxomolybdate-carbonyl chemistry, we have investigated the reaction of molybdate with 2,2'-dipyridil. The product of the reaction is the 2-pyridine carboxylate-dimolybdate $[(C_4H_9)_4N]_2[Mo_2O_6(C_5H_4NCO_2)_2]$, a species exhibiting the unusual $[Mo_2O_6]^0$ core.

The reaction of $[(C_4H_9)_4N]_2[Mo_2O_7]$ with 2,2'dipyridil in methanol yields colorless translucent crystals of $[(C_4H_9)_4N]_2[Mo_2O_6(C_5H_4NCO_2)_2]$ in 45% yield. Anal. Calc. for $Mo_2O_{10}N_4C_{44}H_{80}$: C, 52.0; H, 7.87; N, 5.51. Found: C, 51.8; H, 7.72; N, 5.54%. The infrared spectrum is characterized by strong bands at 933 and 910 cm⁻¹ assigned to $\nu_s(Mo=O)$ and $\nu_{as}(Mo=O)$, respectively, and a number of features in the 700 to 860 cm⁻¹ range associated with the Mo₂O₂ bridge. The complex crystallizes in the monoclinic space group $P2_1/c$ with a = 9.959(2) Å, b = 13.708(3) Å, c = 18.851(5) Å; $\beta = 100.76(2)^\circ$, V = 2528.4(10) Å³, $D_{calc} = 1.33$ g cm⁻³ for Z = 2. Structure solution and refinement based on 2882 reflections with $F_o \ge 6\sigma(F_o)$ (Mo K α radiation, $\lambda =$

0.71073 Å) converged at R = 0.0545.

Fig. 1. ORTEP view of $[Mo_2O_6(C_5H_4NCO_2)_2]^{2+}$ showing the atom labeling scheme. Selected bond lengths (Å): Mo1-O1, 1.709(5), Mo1-O2, 1.713(4); Mo1-O3, 2.225(4); Mo1-O3a, 1.805(3); Mo1-O4, 2.139(4); Mo1-N1, 2.382(5); C6-O4, 1.294(7); C6-O5, 1.204(7); C5-C6, 1.504(8); C5-N1, 1.329(8); Mo1-Mo1a, 3.178(1). Angles (°): O1-Mo1-O3, 161.2(2); O4-Mo1-O3a, 151.2(2); O2-Mo1-N1, 159.3(2); O3-Mo1-O3a, 76.4(2); O4-Mo1-N1, 69.9(2); Mo1-O3-Mo1a, 103.6(1).

The structure of $[(C_4H_9)_4N]_2[Mo_2O_6(C_5H_4 NCO_2)_2$ is shown in Fig. 1, and selected bond lengths and angles are presented in the caption. The structure of the binuclear dinegative anionic complex consists of the unusual [Mo₂O₆]⁰ core, ligated to two pyridinecarboxylate ligands. The Mo centers display [MoO₅N] pseudo-octahedral geometry as a consequence of coordination to two mutually cis terminal oxo groups, two bridging oxo groups, a carboxylate oxygen donor, and a pyridine nitrogen donor of the pyridinecarboxylate ligand. One terminal oxo group of each molybdenum center is normal to the Mo_2O_2 bridge plane, adopting an *anti* configuration. Consequently, the second terminal oxo group must lie approximately in the Mo₂O₂ plane in order to adopt the preferred cis terminal dioxo configuration. The significant trans influence of the inplane terminal oxo groups results in the lengthening of two opposite Mo-bridging oxo distances to 2.226-(2) Å, compared to a distance of 1.805(2) Å for the Mo-bridging oxo distances trans to the carboxylate oxygen donor. The alternating long-short pattern of Mo-O distances within the Mo_2O_2 rhombus may be characteristic of the $[Mo_2O_6]^0$ core [6].

© Elsevier Sequoia/Printed in Switzerland

^{*}Author to whom correspondence should be addressed.

Although oxo-coordination is ubiquitous for molybdenum species in the (V) and (VI) oxidation states, the common structural cores have been identified as $[MoO_2]^{2+}$, $[MoO_3]^0$ and $[Mo_2O_5]^{2+}$ for Mo(VI), and $[Mo_2O_3]^{4+}$ and $[Mo_2O_4]^{2+}$ for Mo(V) [7, 8]. The $[Mo_2O_6]^0$ core has now been documented in two cases, the title complex and $[Mo_2O_6-(tropolonate)_2]^{2+}$ [6]. The results suggest that bidentate monoanionic ligands with extensive π delocalization throughout the chelate ring may stabilize the $[Mo_2O_6]^0$ core in non-aqueous solvents [9]. The core does not persist in aqueous media.

The pyridinecarboxylato ligand is formed in the course of the common carbonyl insertion of the reactant pyridil-carbonyl group into a molybdenum— oxygen bond. The resultant dipyridyl diketal, unlike the analogous phenanthrene diketal [3] which retains its integrity, undergoes C-C bond cleavage to give the pyridinecarboxylato unit. The C-C bond cleavage may be characteristic with species of this type as it has also been observed in the reaction of benzil with molybdate.

Acknowledgement

This research was supported by a grant from the NSF (CHE 8815299).

References

- R. D. Adams, M. F. Fredrich, W. G. Klemperer and R.-S. Liu, J. Am. Chem. Soc., 101 (1979) 491; R. D. Adams, W. G. Klemperer and R.-S. Liu, J. Chem. Soc., Chem. Commun., (1979) 256.
- 2 V. W. Day, M. R. Thompson, W. G. Klemperer and R.-S. Liu, J. Am. Chem. Soc., 102 (1980) 5973.
- 3 S. Liu, N. Shaikh and J. Zubieta, Inorg. Chem., 27 (1988) 3064.
- 4 H. Knozinger, Adv. Catal., 25 (1976) 184.
- 5 Q. Chen, S. Liu and J. Zubieta, Angew. Chem., Int. Ed. Engl., 27 (1988) 1724.
- 6 S. Liu and J. Zubieta, Polyhedron, 7 (1988) 1129.
- 7 E. I. Stiefel, Prog. Inorg. Chem., 22 (1977) 1.
- 8 B. Spivach and Z. Dori, Coord. Chem. Rev., 17 (1975) 99.
- 9 V. W. Day and W. G. Klemperer, Science, 228 (1986) 533.