Seven-coordinate Complexes. Reactions of the Complex $[MoCl(SnCl_3)(CO)_3(NCMe)_2]$ with Bidentate Nitrogen Donor Ligands

PAUL K. BAKER* and ANTONY J. QUINLAN

Department of Chemistry, University College of North Wales, Bangor, Gwynedd LL57 2UW (U.K.) (Received February 3, 1989; revised May 4, 1989)

Although a large number of seven-coordinate dihalocarbonyl compounds of molybdenum(II) and tungsten(II) of the type $[MX_2(CO)_3L_2]$ (M = Mo or W; X = Cl, Br or I; L = monodentate donor ligands; L_2 = bidentate donor ligands) are known [1-11] very few tin halide complexes of this type have been reported. In 1968, Lewis and coworkers [12] reported the reaction of the zero-valent molybdenum complex $[Mo(CO)_4(bipy)]$ (bipy = 2,2'-bipyridine) with one equivalent of SnCl₄ to give the sevencoordinate compound $[MoCl(SnCl_3)(CO)_3(bipy)]$. Kummer and Graham [13] extended this type of reaction by using SnX_4 (X = Br and I) and GeX_4 (X = Cl, Br or I). More recently, in 1985 Panizo and Cano [14] have reported the synthesis of the seven-[MoCl(SnCl₃)(CO)₂{P(4coordinate compounds $XC_6H_4_3$ (bipy)] (X = F, Cl or Me). In the same year, Bell and Walton [15] reported the reaction of the zero-valent complex [Mo(CO)₄(RN:CHCH:NR)] (R = Prⁱ, Bu^t or Cy) with SnCl₄, to give the sevencoordinate compounds [MoCl(SnCl₃)(CO)₃(RN:-CHCH:NR)].

We have recently described the synthesis of the reactive seven-coordinate bisacetonitrile complex $[MoCl(SnCl_3)(CO)_3(NCMe)_2]$ [16]. The complex $[MoCl(SnCl_3)(CO)_3(NCMe)_2]$ is prepared *in situ* by reacting the trisacetonitrile compound $[Mo(CO)_3-(NCMe)_3]$ [17] with an equimolar quantity of SnCl₄. In this paper we wish to describe its reactions with bidentate nitrogen donor ligands.

Experimental

The complex $[MoCl(SnCl_3)(CO)_3(NCMe)_2]$ was prepared by the published method [16]. The 1,4diaza-1,3-butadiene ligands RN:CHCH:NR (R = Buⁱ, Cy and p-MeOPh) were prepared by the published method [18-20]. All chemicals were purchased from commercial sources except $[Mo(CO)_6]$, which was kindly donated by Amax Speciality Metals U.K. Ltd. Elemental analyses (C, H and N) were determined using a Carlo Erba elemental analyser MOD 1106 (using helium as a carrier gas). Infrared spectra were recorded on a Perkin-Elmer 1430 ratio-recording infrared spectrophotometer. Magnetic susceptibility measurements were measured on a Johnson-Matthey magnetic susceptibility balance.

$[MoCl(SnCl_3)(CO)_3(bipy)]$ (1)

To $[MoCl(SnCl_3)(CO)_3(NCMe)_2]$ (0.50 g, 0.957 mmol) dissolved in acetone (15 cm³) with continuous stirring under a stream of dry nitrogen, was added bipy (0.149 g, 0.957 mmol). After stirring the solution for 2 h, removal of the solvent *in vacuo* and washing with 60-80 petroleum ether and diethyl ether gave purple crystals of $[MoCl(SnCl_3)(CO)_3-(bipy)]$ (1) (yield = 0.42 g, 74%), which were recrystallised from acetone.

Similar reactions of $[MoCl(SnCl_3)(CO)_3(NCMe)_2]$ with one equivalent of N^N (N^N = 1,10-phenanthroline, BuⁱN:CHCH:NBuⁱ, CyN:CHCH:NCy and *p*-MeOPhN:CHCH:NPhOMe-*p*) gave the compounds $[MoCl(SnCl_3)(CO)_3(N^N)]$ (2–5) (See Table 1 for physical and analytical data).

$[Mo(SnCl_3)(CO)_2(Bu^iN:CHCH:NBu^i)_2]Cl(8)$

To $[MoCl(SnCl_3)(CO)_3(NCMe)_2]$ (0.5 g, 0.957 mmol) dissolved in acetone (15 cm³) with continuous stirring under a stream of dry nitrogen, was added BuⁱN:CHCH:NBuⁱ (0.32 g, 1.914 mmol). After stirring the solution for 2 h, removal of the solvent *in vacuo* and washing with 60–80 petroleum ether and diethyl ether gave light brown crystals of $[Mo(SnCl_3)(CO)_2(BuⁱN:CHCH:NBuⁱ)_2]Cl (8)$ (yield = 0.52 g, 72%) which were recrystallised from acetone.

Similar reactions of $[MoCl(SnCl_3)(CO)_3(NCMe)_2]$ with two equivalents of N^N (N^N = 2,2'-bipyridine, 1,10-phenanthroline, CyN:CHCH:NCy and *p*-MeOPhN:CHCH:NPhOMe-*p*) afford the cationic complexes $[Mo(SnCl_3)(CO)_2(N^N)_2]Cl(6, 7, 9, 10)$ (See Table 1 for physical and analytical data).

Results and Discussion

Reaction of the seven-coordinate bisacetonitrile complex $[MoCl(SnCl_3)(CO)_3(NCMe)_2]$ with an equimolar quantity of the bidentate nitrogen donor ligands N^N (N^N = 2,2'-bipyridine, 1,10-phenanthroline, BuⁱN:CHCH:NBuⁱ, CyN:CHCH:NCy and *p*-MeOPhN:CHCH:NPhOMe-*p*) in acetone at room temperature affords the substituted products $[MoCl-(SnCl_3)(CO)_3(N^N)]$ (1-5) in high yield. In contrast, reaction of the bisacetonitrile complex $[MoCl(SnCl_3)-(CO)_3(NCMe)_2]$ with two equivalents of N[^]N (N[^]N = 2,2'-bipyridine, 1,10-phenanthroline, BuⁱN:CHCH:-

© Elsevier Sequoia/Printed in Switzerland

^{*}Author to whom correspondence should be addressed.

Complex	Colour	Yield (%)	Analysis (%) ^a		
			С	Н	N
[MoCl(SnCl ₃)(CO) ₃ (bipy)] (1)	purple	74	26.1 (25.9)	1.3 (2.0)	4.7 (4.6)
$[MoCl(SnCl_3)(CO)_3(phen)] (2)$	red	75	29.1 (29.1)	1.7 (1.3)	4.7 (4.5)
$[MoCl(SnCl_3)(CO)_3(Bu^iN:CHCH:NBu^i)] (3)$	light brown	83	25.5 (25.6)	3.0 (3.3)	5.1 (4.7)
$[MoCl(SnCl_3)(CO)_3(CyN:CHCH:NCy)] (4)$	red	62	31.1 (30.8)	4.6 (3.6)	3.9 (4.2)
[MoCl(SnCl ₃)(CO) ₃ (<i>p</i> -MeOPhN:CHCH:NPhOMe- <i>p</i>)] (5)	brown	50	32.0 (32.2)	3.1 (2.3)	4.1 (4.0)
$[Mo(SnCl_3)(CO)_2(bipy)_2]Cl (6)$	red	73	36.8 (36.5)	2.3 (2.2)	7.1 (7.7)
$[Mo(SnCl_3)(CO)_2(phen)_2]Cl (7)$	dark brown	67	40.4 (40.4)	2.2 (2.1)	6.8 (7.1)
[Mo(SnCl ₃)(CO) ₂ (Bu ⁱ N:CHCH:NBu ⁱ) ₂]Cl (8)	light brown	72	35.8 (35.3)	4.9 (5.3)	7.5 (7.5)
[Mo(SnCl ₃)(CO) ₂ (CyN:CHCH:NCy) ₂]Cl (9)	dark red	85	40.6 (42.2)	6.2 (5.6)	5.9 (6.6)
[Mo(SnCl ₃)(CO) ₂ (<i>p</i> -MeOPhN:CHCH:NPhOMe- <i>p</i>) ₂]Cl (10)	dark red	58	42.0 (43.0)	3.4 (3.4)	6.3 (5.9)

TABLE 1. Physical and analytical data for the complexes $[MoCl(SnCl_3)(CO)_3(N^N)]$ and $[Mo(SnCl_3)(CO)_2(N^N)_2]Cl_3(N^N)_2]Cl_3(N^N)_3(N^N$

^aCalculated values in parentheses.

NBuⁱ, CyN:CHCH:NCy or *p*-MeOPhN:CHCH:-NPhOMe-*p*) gave the cationic complexes [Mo(SnCl₃)-(CO)₂(N^N)₂]Cl (6-10). The seven-coordinate molybdenum complexes 1-10 have been characterised by elemental analysis (C, H and N) (Table 1) and infrared spectroscopy (Table 2). Magnetic susceptibility measurements on the seven-coordinate compounds show that the complexes are diamagnetic.

TABLE 2. Infrared data ^a for the complexes [MoCl(SnCl₃)-(CO)₃(\hat{N})] and [Mo(SnCl₃)(CO)₂(\hat{N})₂]Cl

Complex	$\nu(C=0) (cm^{-1})$	ν (C=N) (cm ⁻¹)	
1			
2	2010(s), 1980(s) and 1920(m)		
3	2080(m), 2050(m) and 1978(s)	1599(s)	
4	2005(m), 1965(s) and 1900(s)	1495(m)	
5	2060(s), 1984(s) and 1910(m)	1525(m)	
6	1879(s) and 1820(s)		
7	1900(s) and 1840(s)		
8	1910(s) and 1865(s)	1 4 60(m)	
9	1900(m) and 1840(s)	1410(s)	
10	1930(m) and 1880(s)	1442(s)	

^aSpectra were recorded as thin films in CHCl₃ between NaCl plates; m, medium; s, strong.

The neutral complexes $[MoCl(SnCl_3)(CO)_3(bipy)]$ (1) [12] and $[MoCl(SnCl_3)(CO)_3(CyN:CHCH:NCy)]$ (4) [15] have been previously described, whereas 2, 3 and 5-10 are new compounds. The neutral (1-5)and cationic (6-10) complexes are moderately stable when stored under nitrogen in the dark; however they decompose when exposed to air in solution. The compounds 1-10 are moderately soluble in acetone and only sparingly soluble in chlorinated sovlents such as CHCl₃ and CH₂Cl₂. They are insoluble in hydrocarbon solvents and diethyl ether. The reactions of $[MoCl(SnCl_3)(CO)_3(NCMe)_2]$ with N^N are considerably slower than the reactions of sevencoordinate diiodo compounds $[MI_2(CO)_3(NCMe)_2]$ (M = Mo or W) with bidentate nitrogen donor ligands N^N ($N^N = 2,2'$ -bipyridine and 1,10-phenanthroline) to give $[MI_2(CO)_3(N^N)]$ [21].

Two equivalents of N^N (N^N = 2,2'-bipyridine, 1,10-phenanthroline, BuⁱN:CHCH:NBuⁱ, CyN:-CHCH:NCy and p-MeOPhN:CHCH:NPhOMe-p) react with [MoCl(SnCl₃)(CO)₃(NCMe)₂] to give the cationic dicarbonyl compounds [Mo(SnCl₃)(CO)₂N^N)₂]-Cl. These cationic dicarbonyl compounds (6–10) are probably prepared via reaction of [MoCl(SnCl₃)-(CO)₃(N^N)] with N^NN, which displaces a carbon monoxide ligand and an ionisable chloride ion. These cationic dicarbonyl compounds are analogous to previously reported complexes of the types $[MX(CO)_2(L^{L})_2]X$ (M = Mo, X = Cl or Br; L^L = 2,2'-bipyridine; M = Mo, X = Cl, L^L = 1,10-phenanthroline [22]) and *cis*-[MI(CO)_2(dmpe)_2]I (dmpe = Me_2P(CH_2)PMe_2; M = Mo [23, 24] or W [23]). The infrared spectra of the cationic seven-coordinate compounds [Mo(SnCl₃)(CO)_2(N^N)_2]Cl (6-10) all show two carbonyl bands between 1820 and 1930 cm⁻¹.

The vast majority of seven-coordinate complexes of molybdenum(II) and tungsten(II) have capped octahedral geometry [25], and since the infrared carbonyl pattern of 1-5 is similar to other [MX₂-(CO)₃(L^L)] complexes which have been shown to have capped octahedral geometry [26-30], it is likely these tin halocarbonyl seven-coordinate complexes will exhibit capped octahedral geometry.

Acknowledgements

We wish to thank Amax Speciality Metals U.K. Ltd for their generous gift of $[Mo(CO)_6]$.

References

- 1 F. A. Cotton and B. F. G. Johnson, Inorg. Chem., 3 (1964) 1609.
- 2 B. F. G. Johnson, J. Chem. Soc., A (1967) 475.
- 3 R. Colton, G. P. Scollary and I. B. Tomkins, Aust. J. Chem., 21 (1968) 15.
- 4 W. S. Tsang, D. W. Meek and A. Wojcicki, *Inorg. Chem.*, 7 (1968) 1263.
- 5 R. Colton and C. J. Rix, Aust. J. Chem., 22 (1969) 305.
- 6 J. A. Bowden and R. Colton, Aust. J. Chem., 22 (1969) 905.

- 7 J. R. Moss and B. L. Shaw, J. Chem. Soc. A, (1970) 595.
- 8 R. Colton, Coord. Chem. Rev., 6 (1971) 269.
- 9 A. D. Westland and N. Muriithi, *Inorg. Chem.*, 12 (1973) 2356.
- 10 P. K. Baker and S. G. Fraser, Inorg. Chim. Acta, 116 (1986) L1.
- 11 P. K. Baker and S. G. Fraser, Inorg. Chim. Acta, 130 (1987) 61.
- 12 K. Edgar, B. F. G. Johnson, J. Lewis and S. B. Wild, J. Chem. Soc. A, (1968) 2851.
- 13 R. Kummer and W. A. G. Graham, Inorg. Chem., 7 (1968) 310.
- 14 M. Panizo and M. Cano, J. Organomet. Chem., 287 (1985) 221.
- 15 A. Bell and R. A. Walton, J. Organomet. Chem., 290 (1985) 341.
- 16 P. K. Baker and A. Bury, J. Organomet. Chem., 359 (1989) 189.
- 17 D. P. Tate, W. R. Knipple and J. M. Augl, *Inorg. Chem.*, 1 (1962) 433.
- 18 L. A. Cort and N. R. Francis, J. Chem. Soc., (1964) 2799.
- 19 J. M. Kleigman and R. K. Barnes, *Tetrahedron Lett.*, 22 (1970) 1859.
- 20 A. T. T. Hsieh and B. O. West, J. Organomet. Chem., 112 (1976) 285.
- 21 P. K. Baker and S. G. Fraser, Inorg. Chim. Acta, 116 (1986) L3.
- 22 R. Colton and C. J. Rix, Aust. J. Chem., 21 (1968) 1155.
- 23 J. A. Connor, G. K. McEwen and C. J. Rix, J. Chem. Soc., Dalton Trans., (1974) 589.
- 24 J. A. Connor, G. K. McEwen and C. J. Rix, J. Less-Common Met., 36 (1974) 207.
- 25 M. G. B. Drew, *Prog. Inorg. Chem.*, 23 (1977) 67, and refs. cited therein.
- 26 M. G. B. Drew and C. J. Rix, J. Organomet. Chem., 102 (1975) 467.
- 27 M. G. B. Drew, J. Chem. Soc., Dalton Trans., (1972) 1329.
- 28 A. Mercer and J. Trotter, Can. J. Chem., 52 (1974) 3331.
- 29 J. C. Dewan, K. Henrick, D. L. Keppert, K. R. Trigwell, A. H. White and S. B. Wild, J. Chem. Soc., Dalton Trans., (1975) 546.
- 30 M. G. B. Drew and A. P. Wolters, Acta Crystallogr., Sect. B, 33 (1977) 205.