NMR Study of the Exchange Reactions between Allyltrialkyltin Compounds and Lewis Acids Part 1. Exchanges with Boron Tribromide and Trifluoride and Titanium Tetrachloride

PAUL HARSTON, JAMES L. WARDELL*

Department of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB9 2UE (U.K.)

DANIELE MARTON, GIUSEPPE TAGLIAVINI

Dipartimento di Chimica Inorganica, Metallorganica e Analitica dell'Università di Padova, Via Marzolo 1, I-35131 Padua (Italy)

and PETER J. SMITH

International Tin Research Institute, Kingston Lane, Uxbridge, Middlesex UB8 3PJ (U.K.) (Received December 28, 1988; revised March 7, 1989)

Abstract

Reactions between BX_3 (X = F or Br) and TiCl₄ with R¹CH=CHCH₂SnR₃ [I, R = Me, Bu or cyclohexyl(Cy); R¹ = H or Me] have been studied by NMR spectroscopy. Allyl group-bromine exchanges occur between I and BBr₃ at -60 °C; at higher temperatures (c. -10 °C) I (R = Me or Bu but not Cy) reacts further to give R₂SnBr₂. No allyl groupfluorine exchange products were detected from the reaction between I and BF₃·Et₂O below -20 °C. However, at 25 °C I (R = Me, R¹ = H) reacts readily with BF₃·Et₂O, the predominant soluble tin product being Me₄Sn. Compounds I and TiCl₄ at 30 °C rapidly produce R₃SnCl and [RCHCHCH₂]TiCl₃.

Introduction

Organotin—haloboron exchange reactions have been variously shown to give organoboron species [1-15]; indeed, this type of reaction is one of the more useful routes to such compounds [1]. Organic groups transferred from tin to boron have included allyl [2-4], aryl [4-9], vinyl [4-10], benzyl [11, 12] and simple alkyl groups [9, 13, 14]. The reactivities of the organo—tin bonds in unsymmetric tetraorganotins are those expected for electrophilic reactions, e.g. with R¹CH=CHCH₂SnR₃ (R, R¹ = alkyl or phenyl), the allyl group being transferred (with retention of configuration) in preference to either an alkyl or a phenyl group [3, 4]. With BX₃ (X = Cl or Br but not F) either in excess, with higher reaction temperatures, or with prolonged reaction times, more than one organic group can be transferred from a tetraorganotin; see for example refs. 2 and 4. Based on the reaction conditions used for the exchanges BBr₃ (and BCl_3) is apparently much more reactive than BF_3 ; see for example ref. 4. The temperatures frequently employed for the BBr3 and BCl3 exchanges are however ambient or higher. It was considered to be of value to investigate the extent of the exchanges, especially of allyl-tin compounds, at lower temperatures. One reason for this interest is that BX_3 (and other metal halides, MX_N) are used as additional reagents in reactions involving allyl-tins and carbonyl compounds [16-19], eqn. (1). The influence of the metal halide on the stereochemistry has been ascribed to specific complexation with the aldehyde;

$$R^{2}CHO + R^{1}CH=CHCH_{2}SnR_{3} \xrightarrow{(1) BX_{3}} (ii) H_{2}O$$

$$R^{2}CH(OH)CHR^{1}CH=CH_{2} \qquad (1)$$

$$R^{2}CH(OH)CHR^{1}CH=CH_{2} \qquad (1)$$

threo/erythro

the complex then undergoing reaction with the allyltin. However, if the allyl-halide exchange between $R^1CH=CHCH_2SnR_3$ and MX_N readily occurs at the reaction temperature, an alternative description may have to be found. Recently, Denmark *et al.* [19] reported a ¹³C NMR study of the interaction between allyltrimethyltin and BF₃·Et₂O in CDCl₃/CD₂Cl₂ media at temperatures between -80 and 20 °C. They concluded that no metathesis to allyl-BF₂ and Me₃SnF·BF₃ resulted but that disproportionation of Me₃SnCH₂CH=CH₂ to $\Sigma Me_nSn(CH_2CH=CH_2)_{4-n}$ resulted. Their results have prompted us to report our findings.

0020-1693/89/\$3.50

^{*}Author to whom correspondence should be addressed.

We have studied interactions between $R^1CH=$ CHCH₂SnR₃ [I, $R^1 = H$ or Me; R = Me, Bu or cyclohexyl(Cy)] and BX₃ (X = Br or F) at temperatures between -70 and +30 °C using NMR spectroscopy, in particular ¹¹⁹Sn NMR spectroscopy. In addition, reactions with TiCl₄ at 30 °C have been investigated.

Experimental

Lewis Acids

Boron tribromide, boron trifluoride etherate and titanium tetrachloride were of the best available commercial grade and were used as received.

Compounds

Me₃SnCH₂CH=CH₂, Me₃SnCH₂CH=CHMe [(*E*): (*Z*) 1:0.93 mixture], Bu₃SnCH₂CH=CH₂, Bu₃SnCH₂-CH=CHMe [(*E*):(*Z*) 1:0.67 mixture], Cy₃SnCH₂CH=CH₂ and Cy₃SnCH₂CH=CHMe [(*E*):(*Z*) mixture admixed with Cy₃SnCHMeCH=CH₂] were obtained by standard means from the allyl-Grignard and the trialkyltin chloride [e.g. 20, 21]. All compounds had the expected analyses; values of the ¹¹⁹Sn chemical shifts are given in Table 1.

TABLE 1. ^{119}Sn NMR chemical shift values for I in CDCl_3 solution at 30 $^\circ\text{C}$

I	$\delta^{119} Sn^a$	
Me ₃ SnCH ₂ CH=CH ₂	-2.4	(-5.4) ^b
(E)-Me ₃ SnCH ₂ CH=CHMe	-5.8	
(Z)-Me ₃ SnCH ₂ CH=CHMe	-9.0	
Bu ₃ SnCH ₂ CH=CH ₂	-17.3	
(E)-Bu ₃ SnCH ₂ CH=CHMe ^c	-12.3	(-15.3) ^c
(Z)-Bu ₃ SnCH ₂ CH=CHMe ^c	-16.5	(-19.4) ^c
Cy ₃ SnCH ₂ CH=CH ₂	-77.8	
(E)-Cy ₃ SnCH ₂ CH=CHMe	-69.7	
(Z)-Cy ₃ SnCH ₂ CH=CHMe	-75.2	
Cy ₃ SnCHMeCH=CH ₂	-93.2	

^aPositive values denote high frequency shifts from the reference Me₄Sn. ^bLiterature value [22]. ^cLiterature values [16] for neat liquids.

Procedure

All manipulations were conducted under anhydrous conditions. Solutions for the NMR study at low temperature were made up by the addition of a solution of the Lewis acid to a solution of I in the chosen solvent at -64 or -78 °C. The NMR tube was then placed in the spectrometer probe maintained at this temperature and the temperature altered to the desired temperature.

¹H NMR spectra were recorded on a Perkin-Elmer RA34 (220 MHz) spectrometer. Jeol FX-90Q instruments were used for ¹¹⁹Sn NMR (at 33.35 MHz), for ¹¹B NMR (at 28.69 MHz) and for ¹⁹F NMR (at 84.25 MHz) spectra. Reference samples (sealed into capillaries) were neat Me₄Sn (for ¹¹⁹Sn NMR) and neat BF₃·Et₂O (for both ¹¹B and ¹⁹F NMR).

Results and Discussion

Interactions with Boron Tribromide

Compounds I (R = Me, Bu or Cy; R¹ = H or Me) react readily with BBr₃ at low temperatures; for example, the reaction between equimolar Me₃SnCH₂-CH=CH₂ and BBr₃ in CDCl₃ solution occurred quantitatively at -60 °C to give Me₃SnBr [δ^{119} Sn 145.3 ppm (rel. to Me₄Sn)] and CH₂=CHCH₂BBr₂ [δ^{11} B 39.7 ppm (rel. to BF₃·Et₂O)], eqn. (2). No other tin or boron species was detected in the NMR spectra.

$$Me_3SnCH_2CH=CH_2 + BBr_3$$
 —

$Me_3SnBr + CH_2 = CHCH_2BBr_2$ (2)

On raising the temperature, further reaction resulted in the formation of Me_2SnBr_2 . This was initially detected at -10 °C in the ¹¹⁹Sn NMR spectrum. (δ ¹¹⁹Sn 68.7 ppm at -10 °C]. Longer reaction times and higher temperatures led to higher yields of Me_2SnBr_2 ; complete formation of Me_2SnBr_2 was only realized after several hours at 25 °C [Me_2SnBr_2 δ ¹¹⁹Sn 70.6 ppm at 25 °C: literature value [23] 70 ppm (in benzene at 25 °C)]. The δ ¹¹⁹Sn values for Me_3SnBr (and other R_3SnBr) varied with temperature over the range -60 to +30 °C (see Table 2), probably due to changes in association. It has been quoted

Compound	Temperature (°C)							
	-60	-50	-40	-30	-10	0	30	
Me ₃ SnBr ^a	148.0	145.3	141.4	140.1	138.8	138.2	137.8	
Bu ₃ SnBr	154.5	148.3	147.0	149.6	146.8		141.9	
Cy ₃ SnBr	83.3			81.1		79.5	76.4	

TABLE 2. Variation of δ^{119} Sn for R₃SnBr in CDCl₃ solution with temperature

^aLiterature values [23] 130.7 ppm (neat) and 128 ppm (in benzene) at 30 °C.

[24] that, in the narrower temperature range of -5 to +35 °C, little if any change in values of δ^{119} Sn for Me₃SnCl in CCl₄ or benzene solutions was found.

Formally the Me-Br exchange, leading to Me_2SnBr_2 , would provide [(CH₂=CHCH₂)MeBBr], eqn. (3). However it was clear from the ¹¹B NMR

$$Me_3SnBr + CH_2 = CHCH_2BBr_2 \longrightarrow$$

$$Me_2SnBr_2 + [(CH_2=CHCH_2)MeBBr]$$
 (3)

spectrum that disproportionation of the organoboron products was occurring. For example, at the reaction stage when Me₃SnBr and Me₂SnBr₂ were present in an approximate 1:2 mole ratio, three significant (as well as several minor) boron-containing products were indicated: these were MeBBr₂ (δ^{11} B 63.5 ppm, literature value [25] 62.5 ppm), (CH₂=CHCH₂)₃B (δ^{11} B 80.4 ppm, literature value [25] 80.3 ppm) and an unknown compound (δ^{11} B 49.0 ppm). A similar situation arises in CD₂Cl₂ solution; however in this solvent reaction proceeds more rapidly to Me₂SnBr₂ [δ^{119} Sn 70.4 ppm at 25 °C: δ^{1} H 1.34 ppm, $J(^{119}$ Sn-1H) 67 Hz: literature values [23] δ^{1} H 1.36 ppm, $J(^{119}$ Sn-1H) 68 Hz]. When Me₂SnBr₂ was the sole tin species present, there were various organoboron species in solution, including among the major products $CH_2=CHCH_2BBr_2$ ($\delta^{11}B$ 39.0 ppm) and $MeBBr_2$ ($\delta^{11}B$ 63.5 ppm and $\delta^{1}H$ 1.37 ppm: literature value [26] $\delta^{1}H$ 1.43 ppm). Also present was a species having $\delta^{11}B$ 28 ppm and was probably of the type $RB(OH)_2$, arising from hydrolysis.

As shown by ¹¹⁹Sn NMR spectroscopy, (E)- and (Z)-MeCH=CHCH₂SnR₃ (R = Me, Bu or Cy) and $CH_2 = CHCH_2 SnR_3$ (R = Bu or Cy) all react with BBr₃ at -60 °C in CDCl₃ solution to give R₃SnBr [and consequently an allyboron dibromide (II)]. The (E)isomer reacted faster than did the (Z)-isomer, this was also reported by Keck et al. [17b]. While at higher temperatures R_3SnBr (R = Me or Bu) further reacts to give R₂SnBr₂, Cy₃SnBr remains unaffected by II, see Table 3. This reduced reactivity of Cy₃SnBr, compared to Me₃SnBr and Bu₃SnBr, parallels findings towards other electrophiles. When an excess of BBr₃ (c. 60%) was used with Cy₃SnCH₂CH=CH₂, an additional tin-containing species (to Cy₃SnBr) was present in solution. This had a δ^{119} Sn value of 71.8 ppm at 0 °C and 70.7 ppm at 60 °C compared to δ^{119} Sn values for Cy₃SnBr of 83.3 to 76.9 ppm, it was assumed to be $Cy_3Sn^{(+)}BBr_4^{(-)}$.

Of interest, the reaction between (E)-, and (Z)-MeCH=CHCH₂SnBu₃ and BBr₃ in CDCl₃ solution, when maintained throughout at 25 °C gave Bu₃SnBr,

TABLE 5. Reactions of any inflatk yith compounds with DDI3 in CDC13 sol

I	Temperature (°C) (reaction time)	Tin products (δ ¹¹⁹ Sn) ^a	Remarks
Me ₃ SnCH ₂ CH=CH ₂	-60 to -20	Me_3SnBr (145.3 to 139.5) ^b	sole tin product
	-10	$(145.5 \text{ to } 159.5)^{-1}$ Me ₃ SnBr (138.8) Me ₃ SnBr (68.7)	major product
	25 (24 h)	Me_2SnBr_2 (70.6) Me_2SnBr_2 (70.6)	sole tin product
(E)/(Z)-Me ₃ SnCH ₂ CH=CHMe	-60 to 0	Me ₃ SnBr (148.0 to 140.0) ^b	
	30 (5 h)	Me ₃ SnBr (138.1) Me ₂ SnBr ₂ (69.4)	major product minor product
Bu ₃ SnCH ₂ CH=CH ₂	-55 to -10	Bu ₃ SnBr (153.4 to 146.9) ^b	
	25	Bu ₃ SnBr (141.8) Bu ₂ SnBr ₂ (90.7)	major product minor product
(E)/(Z)-Bu ₃ SnCH ₂ CH=CHMe	-60	Bu_3SnBr (154.9)	major product
	-40	$Bu_2SnBr_2 (100.3)$ Bu_3SnBr (149.6) Bu_SnBr_2 (97.2)	(about 1:1)
	25 (24 h)	Bu_2SnBr_2 (96.0)	
Cy ₃ SnCH ₂ CH=CH ₂	- 6 0 to 30	Cy ₃ SnBr (83.3 to 76.9) ^b	
(E)/(Z)-Cy ₃ SnCH ₂ CH=CHMe	-60 to 30	Cy ₃ SnBr (82.4 to 75.6) ^b	

^a Positive values denote high frequency shifts from the reference Me₄Sn. ^b Variation with temperature.

Fig. 1. ¹H NMR spectra of reaction between equimolar Me₃SnCH₂CH=CH₂ and BF₃·Et₂O in CD₂Cl₂/C₆H₆ at 30 °C. (a) Me₃SnCH₂CH=CH₂, (b) Me₃SnCH₂CH=CH₂ + BF₃·Et₂O after $\frac{1}{2}$ h, (c) Me₃SnCH₂CH=CH₂ + BF₃·Et₂O after 64 h.

while the reaction allowed to warm-up gradually from -60 to 25 °C produced both Bu₃SnBr and Bu₂SnBr₂. Exchanges between R¹CH=CHCH₂SnR₃ [R¹ = Me or Ph] and haloboron compounds have been previously shown to proceed with retention of configuration [3, 4].

Interactions with Boron Trifluoride Etherate

The results with BF₃·Et₂O were less conclusive, although it is apparent that BF₃·Et₂O is much less reactive than BBr₃. The ¹³C NMR results of Denmark *et al.* [19] with Me₃SnCH₂CH=CH₂ and BF₃·Et₂O indicated no exchange to CH₂=CHCH₂BF₂ and Me₃SnF·BF₃ occurred. However redistribution of Me₃SnCH₂CH=CH₂ did result in the presence of BF₃·Et₂O to give a mixture of Me_nSn(CH₂CH= CH₂)_{4-n} (n = 0-4) compounds. This redistribution occurred during the temperature sequence $-80 \rightarrow$ $20 \rightarrow -80$ °C. Our results, using ¹⁹F, ¹¹⁹Sn and ¹H NMR confirm that no metathetic exchange happens between I and BF₃·Et₂O and that Me₄Sn is a major product of the rearrangement of Me₃SnCH₂CH=CH₂.

In other work, Brinkman and Stone [4] reported the formation of $CH_2=CHCH_2BF_2$ from $(CH_2=CHCH_2)_4Sn$ and BF_3 on heating. The ¹⁹F NMR spectra in our study clearly point to no fluorine/ organo group (either allylic or alkyl) exchanges occurring between $BF_3 \cdot Et_2O$ and I ($R = Me, R^1 = H$; $R = Bu, R^1 = Me$) in THF/CDCl₃ at temperatures from -80 to c. -20 °C for short contact times.

On maintaining the reaction solution at temperatures between -25 and 0 °C for days, I was slowly removed (as shown by the ¹¹⁹Sn NMR spectrum). However, no new soluble tin product was detected by ¹¹⁹Sn NMR spectroscopy. Even when I had been totally consumed, there was still significant amounts of BF_3 left – as confirmed by both ¹¹B and ¹⁹F NMR spectra. There were only minor amounts of other boron and fluorine containing species present in solution, e.g. the most significant fluorine product had a δ^{19} F value of +3.9 ppm (rel. to BF₃·Et₂O). The reported ¹¹B chemical shift value for CH₂=CHCH₂-BF₂ is -52 ppm (rel. to BF₃·Et₂O) [27]; this was not present in the reaction mixtures. Our interpretation of the results of the prolonged reactions, in particular the removal of the original allyl-tin species, the large amounts of BF₃ remaining (despite the 1:1 mole ratio of reagents), no soluble tin product and no new major soluble boron or fluorine containing products, is that allyl-fluorine exchange was not occurring. Instead, we believe that hydrolysis/ protonolysis of I or its redistribution products, $Me_nSn(CH_2CH=CH_2)_{4-n}$ (n = 1-4), was resulting from strong proton acids, such as hydrofluoric acid or HBF_4 , present in the reaction mixture. The formation of sparingly soluble R₃SnF or R₃SnF·BF₃ would remove the tin from solution.

The CH₂=CHCH₂SnMe₃-BF₃·Et₂O reaction was also carried out directly at 25 °C in CD₂Cl₂ solution. Allyltrimethyltin was readily consumed, as shown by the ¹H NMR spectrum (Fig. 1). This indicated two major tin compounds in a c. 1:1 integration ratio: a species III, having δ^{1} H 0.31 ppm and $J(^{119}Sn^{-1}H)$ 58 Hz, and Me₄Sn [δ^{119} Sn 1.75 ppm (rel. to neat Me₄Sn): δ^{1} H 0.05 ppm, $J(^{119}Sn^{-1}H)$ 53 Hz; literature values [28]; δ^{1} H 0.04 to -0.07 ppm, $J(^{119}$ Sn-¹H) 53 Hz]. Other tin containing products (all relatively minor) as shown by the ¹¹⁹Sn NMR spectrum had δ^{119} Sn values of -6.6, -9.2 and -26.1 ppm. With longer reaction times, compound III was replaced by another tin compound IV [$\delta^{1}H$ 0.70 ppm and $J(^{119}Sn^{-1}H)$ 62 Hz] and more Me₄Sn [to give c.55% of Me₄Sn based on I]. The chemical shift and coupling constant values for III and IV can be compared with values reported in MeOH solution for Me₃SnF δ^{1} H 0.45 ppm, $J(^{119}$ Sn $^{-1}$ H) 69 Hz for Me₃SnBF₄ δ^{1} H 0.53 ppm, $J(^{119}Sn^{-1}H)$ 69 Hz, and for $Me_2SnF_2 \delta^{1}H 0.75$ ppm, $J(^{119}Sn^{-1}H) 84$ Hz [29]). The proton signals of the allyl moiety were broad and ill-resolved unlike those of Et₂O and the methyltin compounds. No new boron compound was identified.

Interaction with Titanium Tetrachloride

The reaction of I with TiCl₄ (1 equiv.) in CDCl₃ was only studied at 30 °C. Complete and rapid formation of R₃SnCl resulted along with a brown precipitate of an allyl-titanium trichloride, [RCHCHCH₂]-TiCl₃ (V; R = H or Me). Compounds V have been obtained by allylation of TiCl₄ with the allyl-Grignard reagent [30].

TABLE 4. Reaction of allyltrialkyltin compounds (I) with TiCl₄ in CDCl₃ solution at 30 $^{\circ}$ C

1	Tin product (δ ¹¹⁹ Sn) ^a
Me ₃ SnCH ₂ CH=CHMe	Me ₃ SnCl (+170.8)
Me ₃ SnCH ₂ CH=CH ₂	Me ₃ SnCl (+165.9)
Bu ₃ SnCH ₂ CH=CHMe	Bu ₃ SnCl (+156.7)
Bu ₃ SnCH ₂ CH=CH ₂	Bu ₃ SnCl (+150.3)
Cy ₃ SnCH ₂ CH=CHMe	$Cy_3SnCl(+72.3)$
Cy ₃ SnCH ₂ CH=CH ₂	Cy ₃ SnCl (+72.3)

^aPositive values denote high frequency shifts from the reference Me₄Sn.

The precipitation of V, from the CDCl₃ solution effectively prevented further reaction occurring (Table 4). Keck *et al.* report that the reaction of TiCl₄, CH₃CH=CHCH₂SnBu₃ and an aldehyde proceeds to differing products depending upon the order of addition of starting material. It was reported that the addition of CH₃CH=CHCH₂SnBu₃ to TiCl₄, followed by addition of aldehyde (analogous to our own procedure), gave a product which would be expected to arise from the (*E*)-CH₃CH=CHCH₂TiCl₃ intermediate [17b].

Acknowledgements

A SERC CASE award (to P.H.) and a NATO travel grant (to J.L.W./G.T.) are gratefully acknowledged.

The authors wish to thank Prof. W. MacFarlane (City of London Polytechnic) for use of an NMR spectrometer for part of this work.

The International Tin Research Institute, Uxbridge, is thanked for permission to publish this paper.

References

- 1 K. Niedenzu, Organomet. Chem. Rev., 1 (1966) 314.
- 2 Y. Kanigawa, I. Moritani and S. Nishida, J. Organomet. Chem., 28 (1971) 73.
- 3 R. W. Hoffman, G. Feussner, H. J. Zeiss and S. Schule, J. Organomet. Chem, 187 (1980) 321.
- 4 F. E. Brinckman and F. G. A. Stone, J. Am. Chem. Soc., 82 (1960) 6218.
- 5 J. E. Burch, W. Gerrard, M. Howarth and E. F. Modney, J. Chem. Soc., (1960) 4916.
- 6 T. Chivas, Can. J. Chem., 48 (1970) 3856.
- D. W. A. Sharp and J. M. Winfield, J. Chem. Soc., (1965) 7 2278.
- 8 S. Gronowitz and I. Ander, Chemica Scripta, 15 (1980) 135.
- 9 K. B. Dillon and G. F. Hewitson, Polyhedron, 3 (1984) 957.
- 10 P. Fritz, K. Niedenzu and J. W. Dawson, Inorg. Chem., 3 (1964) 626.
- 11 U.-M. Gross, M. Bartels and D. Kaufmann, J. Organomet. Chem., 344 (1988) 277.
- 12 P. I. Paetzold and H. G. Smolka, Chem. Ber., 103 (1970) 289.
- 13 H. Noth and P. Fritz, Z. Anorg. Allg. Chem., 322 (1963) 297; H. Noth and H. Varhenkamp, J. Organomet. Chem., 11 (1968) 399.

- 14 W. Gerrard, E. F. Rooney and R. G. Rees, J. Chem. Soc., (1964) 740.
- 15 L. Killan and B. Wrackmeyer, J. Organomet. Chem., 148 (1978) 137.
- 16 A. Boaretto, D. Marton, G. Tagliavini and P. Ganis, J. Organomet. Chem., 321 (1987) 199, and earlier publications in the series.
- 17 (a) Y. Yamamoto, S. Hatsuya and J.-I. Yamada, J. Chem. Soc., Chem. Commun., (1987) 561, and earlier publications; (b) G. E. Keck, D. E. Abbott, E. P. Boden and E.-J. Enholm, Tetrahedron Lett., 25 (1984) 3927, and earlier publications.
- 18 M. Koreeda and Y. Tanaka, Chem. Lett., (1982) 1299.
- 19 S. E. Denmark, T. Wilson and R. M. Willson, J. Am. Chem. Soc., 110 (1988) 984.
- 20 A. Boretto, D. Furlani, D. Marton, G. Tagliavini and A. Camboro, J. Organomet. Chem., 299 (1986) 157.
- 21 E. M. Tchiroukhine and P. Cadiot, J. Organomet. Chem., 121 (1970) 155, 169.
- 22 R. G. Jones, P. Partington, W. J. Rennie and R. M. G. Roberts, J. Organomet. Chem., 35 (1972) 291.
- 23 Gmelin Handbuch der Anorganischen Chemie, Organo-
- tin Compounds, Part 7, Springer, Berlin 1980. 24 P. J. Smith and A. P. Tupciauskas, Ann. Report NMR Spectroscopy, 8 (1978) 292.
- 25 H. Noth and B. Wrackmeyer, in P. Diehl, E. Fluck and R. Kosfield (eds.), Basic Principles and Progress in NMR Spectroscopy, Vol. 14, NMR Spectroscopy of Boron Compounds, Springer, Verlag, Berlin, 1978.
- 26 H. Noth and H. Varhenkamp, J. Organomet. Chem., 12 (1968) 23.
- 27 T. D. Coyle, S. L. Stafford and F. G. A. Stone, J. Chem. Soc., (1961) 3103.
- 28 Gmelin Handbuch der Anorganischen Chemie, Organotin Compounds, Band 26, Teil 1, Springer, Berlin, 1975.
- 29 J. Lorbeth, J. Organomet. Chem., 17 (1969) 151.
- 30 K.-H. Thiele and K. Jacob, Z. Anorg. Allg. Chem., 356, 195 (1967).