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Solvation/desolvation processes for [(alkane)Cr- 
(CO),] molecules generated after laser flash photo- 
lysis have been the subject of much recent interest 
because these transient species are models for active 
intermediates in a number of important catalytic 
processes [l] and because the interaction of alkanes 
at the vacant coordination site (via an agostic hydro- 
gen) [2] is the first step along the reaction coordinate 
to C-H bond activation by transition metal com- 
plexes [3]. We report data which indicate that re- 
placement by 1-hexene of n-heptane (hep) from 
[(hep)Cr(CO)s] produced after pulsed laser flash 
photolysis takes place by competitive associative 
and dissociative pathways. 

The displacement of hep by a variety of nucleo- 
philes (L, eqn. (1)) has been studied by Peters et al. 
employing time-resolved photoacoustic calorimetry 

[(hep)Cr(CO)s] + L ---+ (L)Cr(CO)S t hep (1) 

sition state leading to solvent replacement [5]. 
These results suggest an associative reaction (Scheme 
1, path a) rather than one in which L reacts with 
[Cr(CO),] produced after hep dissociation from 
[(hep)Cr(CO)s] (Scheme 1, path b). In contrast, in 
chlorobenzene (CB) solution, evidence suggests that 
desolvation of CB from the photogenerated [(CB)- 

Cr(C0)6 hv ------+ [Cr(CO), I 

@athb) k*y k, Ilk-,lsl 

(L)Cr(CO)S A [(S)Cr(CO), 1 
(path a) (predominant 

(S = Solvent) reactive species) 

Scheme 1 

Cr(CO),] transient takes place via initial dissociation 
of CB (Scheme 1, path b) [9]. Thus, both mechan- 
isms illustrated in Scheme 1 have been implicated 
in solvent-displacement reactions of [(S)Cr(CO), J 
species (S = solvent). If these mechanisms are com- 
petitive, the pseudo-first-order rate law based on 
Scheme 1 ([Cr(CO),] is a steady-state intermediate) 
is 

k ohs= {k&,/U-,[Sl +kz[LI)+k3)[Ll (4) 

Where [S] > [L] with [Cr(CO),] relatively non- 
discriminating between S and L (vide supra) 

[4, 51 and by conventional laser flash photolysis 
[S] . Their data afford a second-order rate law 

k cabs = {(k,kz/k-~ISl + k,)[Ll (5) 

-d KhepYWO)s 1 ldt = k [(hep)Cr(CO)sl [Ll (2) 
where 

k obs = W-1 (3) 

Other studies have indicated that [Cr(CO),] reacts 
with L at rates for which AG* approaches zero both 
in the gas phase [6] and in solution [73; thus, based 
on Hammond’s postulate [8], [Cr(CO),] should not 
discriminate significantly among incoming nucleo- 
philes. The results of Peters et al. [5], however, in 
dicate considerable selectivity by the reactive inter- 
mediate produced after laser flash photolysis of 
Cr(C0)6 in hep. Moreover, enthalpies of activation 
which vary with L and which are significantly smaller 
than the experimentally determined Cr-hep bond 
strength, and near-zero entropies of activation for 
reactions of [(hep)Cr(CO)s] with L (eqn. (1)) are 
consistent with significant bond making in the tran- 
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i.e. a rate law consistent with that observed experi- 
mentally (eqn. (2)) since at low [L], [S] will be 
relatively constant. 

The possible presence of the two terms in eqn. (5) 
(S = hep) has been explored through a comparison 
of the rate of hep displacement from [(hep)Cr(CO)s] 
by hex in pure hep solvent versus that observed when 
this solution is diluted (1 :l vol./vol.) with MCHf 
(= perfluoromethylcyclohexane). MCH, interacts 
much less strongly with [Cr(CO),] than does hep, as 
is indicated by the rate constants for displacement of 
MCHr and hep from [(S)Cr(CO),], 3.0(9) X lo9 
M-’ S-I (L = cyclohexane) [lo], versus 1.47(l) X 
10’ M-’ s-l (L = hex at 25.0 “C), obtained in the 
present study?. Thus, [(MCHf)Cr(CO)s] will be a 

TPulsed laser flash photolysis studies were performed at the 
Center for Fast Kinetics Research, University of Texas at 
Austin, as described elsewhere (ref. 9). The monitoring wave- 
length was 520 nm, h,,, for [ (hep)Cr (CO)s I.1 -Hexene was 
selected as a weak incoming nucleophile, for which a dissoci- 
ative pathway for replacement of hep from [ (hep)Cr(CO)s] is 
more likely to be observed. 
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steady-state intermediate in the presence of hep and, 
in the hep/MCHf solution 

k’ obs = (k,k,lk-,)([LIl[hepl) + k3[LlP (6) 

Combination of eqns. (5) and (6) affords 

2(&b, - k’or,$/]L] = ks (7) 

Thus, for a dissociative mechanism (k3 = 0), 
k obs = k'obs, while for an associative mechanism 
(klk2/k_l[hep] = 0), kobs = 2klobs. For competing 
mechanisms kobs > k’oj,s > k,,,/2. 

The dilution experiments were carried out using 
l-hexene as the incoming nucleophile at 35.0 “C*. 
For [1-hexene] = 0.1188 M in pure hep (and half 
that concentration in 1 :l vol./vol. hep/MCH& 
kobs (eqn. (5)) was determined to be 2.55(11) X lo6 
s-’ and kfobs to be 1.94(15) X lo6 s-l, which corre- 
spond to a k3 value of 1.0(4) X 10’ M-’ s-’ in pure 
heptane. Within experimental error, this rate constant 
indicates roughly equal contributions of the two 
reaction pathways to the overall rate, since klk2/k_l- 
[hep] = 1.1(5) X 10’ M-’ s-r; klkJk_-l = 8(3) X 10’ 
s-l. 

Eyring activation parameters for displacement of 
hep from [(hep)Cr(CO)s] in pure hep by 1-hexene 
were determined from preliminary data over a tem- 
perature range of 2.0-45.0 “C. The enthalpy of acti- 
vation, 7.4(l) kcal/mol, is not inconsistent with the 
value obtained for the hep-Cr bond strength (9.8 
kcal/mol) by Peters et al. [4,5] and with their con- 
clusion for stronger nucleophiles such as pyridine 
that displacement of hep from [(hep)Cr(CO),] is 
(largely) associative in nature. The near-zero entropy 
of activation (0.6(4) cal/deg mol) also is consistent 
with competitive dissociative and associative reaction 
pathways observed here for L = hex. 

*These experiments were carried out at 35.0 “C rather than 
at 25.0 “C because MCHr and hep were observed not to be 
miscible at temperatures below 26.4( 1) “C. 
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