Effect of Carboxylate Ligands on the Rate of Co²⁺ Incorporation into 1,4,8,11-Tetraazacyclo**tetradecane**

YIHE WU* and THOMAS A. KADEN**

Institute of Inorganic Chemistry, Spitalstrasse 51, CH-4056 Base1 (Switzerland)

(Received February 16,1989; revised June 17,1989)

The mechanism of metal ion incorporation into tetraazamacrocycles has been discussed in several papers, taking into account the ring size [l], the degree of substitution [2] and the type of protonation [3]. The studies in aqueous solution have shown that, in general, the protonated forms $CyH₂²⁺$ and CyH+ are the reactive ones. Especially in the case of $CyH₂²⁺ electrostatic effects play an important role and$ can slow down the rate by several orders of magnitude.

We have previously observed that the addition of ligands, which form complexes with a smaller positive charge, increases the rate for Cu^{2+} and Ni²⁺ and have shown that there is a non-linear correlation between the log of the rate constant and the log of the stability constant of the complex [4,5]. In continuation of these studies, we present here results on the rate of complexation of $Co²⁺$ with 1,4,8,11-tetraazacyclotetradecane (Cy) in the presence of a series of additional ligands with carboxylic groups, such as α picolinic, glycolic, malonic and tricarballylic acid.

Experimental -1.4

1,4,8,1 l-Tetraazacyclotetradecane (Cy) was prepared according to the literature; melting point 184- 186 °C (185-186 $^{\circ}$ [6]). All other chemicals were of analytical grade and were used without further purification.

The kinetics of the complexation of $Co²⁺$ and Cy were studied by a pH-stat technique (Metrohm) following the release of protons according to eqn. (1) , whereby $L = \alpha$ -picolinate, glycolate, malonate or tricarballylate.

$$
Col_m + CyH_n^{n+} \longrightarrow Co(Cy)^{2+} + mL + nH^+ \tag{1}
$$

Typical concentrations were: $[L]_{tot} = 1.6 \times 10^{-3}$ to 1.6×10^{-2} M, $[Cy]_{\text{tot}} = 8 \times 10^{-4}$ M, $[C0^{2+}]_{\text{tot}} = 8 \times$ 10^{-3} M, $I = 0.5$ M (KNO₃), $T = 25.0 \pm 0.5$ °C, under N_2 atmosphere to prevent oxidation of $Co²⁺$. The pH, measured with a calibrated glass electrode, was chosen so that no $Co(OH)_2$ precipitation occurred.

The rate constants were calculated from 20 to 30 points of the pH-stat curves using the program ELORMA [7] for pseudo-first-order reaction $(\mathrm{[Co^{2+}]_{tot}} \gg \mathrm{[Cy]}_{\mathrm{tot}})$. The error in k_{obs} was smaller than 5% for duplicates.

Results and Discussion

The incorporation rate of $Co²⁺$ into Cy, measured in the presence of an additional ligand L, is a bimolecular reaction (between $Co²⁺$ and Cy) but is also dependent on the pH and [L] concentration. For the four ligands studied, log $k_{\text{obs}}/\text{log}[L]$ profiles at different pH values are more or less complicated, depending on the species CoL_m , on their reactivity, and on the protonated form of the macrocycle CyH_{n}^{n+} (Figs. 1–4). The shape of these curves can be fitted with Scheme 1, which takes into account all the possible species present in solution.

Fig. 1. Log $k_{\text{obs}}/\text{log}$ [L] profile for L = Pic at pH 7.22 (a) and 7.34 (b) and $[Co^{2+}] = 8 \times 10^{-3}$ M. The curves are calculated with the rate constants of Table 2.

From this one can derive the general rate law expression, eqn. (2), as described in ref. 4.

0020-1693/89/\$3.50 0 Elsevier Sequoia/Printed in Switzerland

^{*}Present address: Laboratory of Applied Chemistry Research, Shangai Institute of Mechanical Engineering, Shangai, China.

^{**}Author to whom correspondence should be addressed.

Fig. 2. Log $k_{\text{obs}}/\text{log}$ [L] profile for L = Glyc at pH 6.97 (a) and 7.08 (b) and $[Co^{2+}] = 8 \times 10^{-3}$ M. The curves are calculated with the rate constants of Table 2.

$$
\frac{d[Co(Cy)]}{dt} = \frac{\sum_{m} \sum_{n} k_{CyH_{n}}^{Col_{m}} \beta_{CoL_{m}} \beta_{CyH_{n}} [L]^{m} [H]^{n}}{\sum_{n} \beta_{CyH_{n}} [H^{+}]^{n}} \times [Cy]_{\text{tot}} [Co^{2+}]_{\text{tot}}
$$
\n(2)

from which eqn. (3) follows

 $k_{\rm obs}$ =

$$
\frac{\left[\text{Co}^{2+}\right] \Sigma_{n} \Sigma_{m} k_{\text{Cyl}_n}^{\text{Col}_m} \beta_{\text{Col}_m} \beta_{\text{Cyl}_n} \left[L\right]^{m} \left[H^{\dagger}\right]^{n}}{\Sigma_{n} \beta_{\text{Cyl}_n} \left[H^{\dagger}\right]^{n}}
$$
(3)

with $\beta_{\text{Co}} = \beta_{\text{Cv}} = 1$ for $m = n = 0$. The free concentrations of Co^{2+} and L were calculated by the Newton-Raphson method using the protonation and stability constants taken from the literature (Table 1). The biconstants taken from the *accuracy*
molecular rate constants $k_{\text{CyH}_{n}}^{\text{COL}_{m}}$ were then determined by fitting k_{abc} with eqn. (3) by a non-linear east-squares program. The quality of the fit can be seen from Figs. 1-4 and from the values of $\sigma_{\log k_{\text{obs}}}$ given in Table 2.

The results of Table 2 show that beside the free metal ion (Co^{2+}) the 1:1 complexes (CoL) and, in one case, also $CoL₂$ can react with the monoproto-

ig. 3. Log k_{obs} /log [L] profile for $L = Mal$ at pH 6.94 (a) and 7.06 (b) and $[Co^{2+}] = 8 \times 10^{-3}$ M. The curves are calculated with the rate constants of Table 2.

 \int ig. 4. Log k_{obs}/\log [L] profile for L = Tri at pH 7.02 (a) nd 7.24 (b) and $[Co^{2+}] = 8 \times 10^{-3}$ M. The curves are calculated with the rate constants of Table 2.

nated form of the macrocycles CyH'. Only in the case of tricarballylic acid was a bimolecular path involving $CyH₂²⁺$ found, probably because the 1:1 complex $Co(Tri)^-$ has a negative charge, which makes a reaction with a dipositive ion $CyH₂²⁺$ electrostatically favourable.

TABLE 1. Protonation and Co^{2+} stability constants of the ligands L used for the calculation of the species distribution

Ligand L^a	Protonation constants			Stability constants		Reference
	$\log \beta_{\rm LH}$	$\log \beta_{\rm LH}$,	$\log \beta_{\rm LH}$,	$\log \beta_{\text{CoL}}$	$\log \beta_{\rm{CoL}}$	
Pic	4.95			6.00	10.80	8
Glyc	3.57			1,48		
Mal	5.08	7.65		2.66		a
Tri	5.95	10.58	14.08	2.44		8

 ${}^{a}Pic = \alpha$ -picolinate, Glyc = glycolate, Mal = malonate, Tri = tricarballylate.

Ligand	k_{Co}^{CyH}	$k_{\mathrm{CoL}}^{\mathrm{CyH}}$	$k_{\text{COL}}^{\text{CyH}}$	$k_{\mathrm{CoL}}^{\mathrm{CyH}_2}$	$N^{\mathbf{a}}$	σ _p
Pic	$2.1(1) \times 10^4$	$2.6(1) \times 10^4$	$2.0(1) \times 10^4$		20	0.013
Glyc	$2.1(1) \times 10^4$	$1.5(1) \times 10^5$			20	0.026
Mal	$2.1(2) \times 10^4$	$1.6(1) \times 10^5$			19	0.030
Tri	$2.5(1) \times 10^4$			20(1)	20	0.023

TABLE 2. Bimolecular rate constants $(M^{-1} s^{-1})$ and standard errors (in parentheses) for the reactions of eqn. (1) at 25 °C and $I = 0.5 M (KNO₃)$

a Number of experiments. b_{σ} is the standard deviation of log k_{obs} after fitting with the values of this Table.

For CyH+. the charge plays a relatively small role. **References** The less positive the charge of the complex the faster the complexation rate with the macrocycle. These results are fully consistent with those previously found for Ni^{2+} [4] and Cu^{2+} [5] and, as discussed there, we must assume that at least one intermediate must be a mixed-ligand complex, in which both the additional ligand L and the macrocycle Cy are coordinated. The pH-stat measurements, however, did not allow the detection of any such species. Finally, one can also note that the rates for the $Co²⁺$ complexes are between those of the Cu^{2+} and the Ni²⁺ complexes, as expected from the solvent exchange rate of these ions.

Acknowledgement

This work was supported by the Swiss National Science Foundation (Project 20.5372.87) and this is gratefully acknowledged.

- 1 A. Leugger, L. Hertli and Th. A. Kaden, *Helv. Chim. Acta, 61 (1978) 2296;* E. Kimura and M. Kodama, *Yuki Gosei Kagaku Kyokaishi, 35 (1977) 632,* and refs. therein.
- 2 R. Buxtorf and Th. A. Kaden, *Helv. Chim. Acta, 57 (1974) 1035;* W. Steinmann and Th. A. Kaden, *Helv. Chim. Acta, 58 (1975) 1358.*
- 3 *C.* T. Rorabacher, G. R. Cayley and D. M. Margerum, *Inorg.* Chem., 14 (1975) 919; Th. A. Kaden, *Helv. Chim. Acta, 53 (1970) 617.*
- Yi-he Wu and Th. A. Kaden, *Helv. Chim. Acta, 67 (1984) 1868.*
- Yi-he Wu and Th. A. Kaden, *Helv. Chim. Acta, 68 (1985) 1611.*
- E. K. Barefield, E. Wagner, A. W. Herlinger and A. R. Dahl, *Inorg. Synth., 16* (1976) 220.
- H. Gampp, M. Mader and A. D. Zuberbiihler, *Talanta, 27 (1980) 1037.*
- L. G. Sillen and A. E. Martell, *Stability Constants of Metal Ion Complexes,* The Chemical Society, London, 1964.
- 9 A. E. Martell and R. M. Smith, *Critical Stability Constants,* Vol. 5, Plenum, New York, 1982.