Effect of Carboxylate Ligands on the Rate of Co²⁺ Incorporation into 1,4,8,11-Tetraazacyclotetradecane

YI-HE WU* and THOMAS A. KADEN**

Institute of Inorganic Chemistry, Spitalstrasse 51, CH-4056 Basel (Switzerland) (Received February 16, 1989; revised June 17, 1989)

The mechanism of metal ion incorporation into tetraazamacrocycles has been discussed in several papers, taking into account the ring size [1], the degree of substitution [2] and the type of protonation [3]. The studies in aqueous solution have shown that, in general, the protonated forms CyH_2^{2+} and CyH^+ are the reactive ones. Especially in the case of CyH_2^{2+} electrostatic effects play an important role and can slow down the rate by several orders of magnitude.

We have previously observed that the addition of ligands, which form complexes with a smaller positive charge, increases the rate for Cu^{2+} and Ni^{2+} and have shown that there is a non-linear correlation between the log of the rate constant and the log of the stability constant of the complex [4, 5]. In continuation of these studies, we present here results on the rate of complexation of Co^{2+} with 1,4,8,11-tetraazacyclotetradecane (Cy) in the presence of a series of additional ligands with carboxylic groups, such as α -picolinic, glycolic, malonic and tricarballylic acid.

Experimental

1,4,8,11-Tetraazacyclotetradecane (Cy) was prepared according to the literature; melting point 184-186 °C ($185-186^{\circ}$ [6]). All other chemicals were of analytical grade and were used without further purification.

The kinetics of the complexation of Co^{2+} and Cy were studied by a pH-stat technique (Metrohm) following the release of protons according to eqn. (1), whereby $L = \alpha$ -picolinate, glycolate, malonate or tricarballylate.

$$\operatorname{CoL}_{m} + \operatorname{CyH}_{n}^{n+} \longrightarrow \operatorname{Co}(\operatorname{Cy})^{2+} + m\operatorname{L} + n\operatorname{H}^{+}$$
(1)

Typical concentrations were: $[L]_{tot} = 1.6 \times 10^{-3}$ to 1.6×10^{-2} M, $[Cy]_{tot} = 8 \times 10^{-4}$ M, $[Co^{2+}]_{tot} = 8 \times 10^{-3}$ M, I = 0.5 M (KNO₃), $T = 25.0 \pm 0.5$ °C, under N₂ atmosphere to prevent oxidation of Co²⁺. The pH, measured with a calibrated glass electrode, was chosen so that no $Co(OH)_2$ precipitation occurred.

The rate constants were calculated from 20 to 30 points of the pH-stat curves using the program ELORMA [7] for pseudo-first-order reactions $([Co^{2+}]_{tot} \gg [Cy]_{tot})$. The error in k_{obs} was smaller than 5% for duplicates.

Results and Discussion

The incorporation rate of Co^{2^+} into Cy, measured in the presence of an additional ligand L, is a bimolecular reaction (between Co^{2^+} and Cy) but is also dependent on the pH and [L] concentration. For the four ligands studied, log $k_{obs}/\log[L]$ profiles at different pH values are more or less complicated, depending on the species CoL_m , on their reactivity, and on the protonated form of the macrocycle $\operatorname{CyH}_n^{n^+}$ (Figs. 1–4). The shape of these curves can be fitted with Scheme 1, which takes into account all the possible species present in solution.

Fig. 1. Log $k_{obs}/\log [L]$ profile for L = Pic at pH 7.22 (a) and 7.34 (b) and $[Co^{2*}] = 8 \times 10^{-3}$ M. The curves are calculated with the rate constants of Table 2.

Scheme 1.

From this one can derive the general rate law expression, eqn. (2), as described in ref. 4.

© Elsevier Sequoia/Printed in Switzerland

^{*}Present address: Laboratory of Applied Chemistry Research, Shangai Institute of Mechanical Engineering, Shangai, China.

^{**}Author to whom correspondence should be addressed.

Fig. 2. Log $k_{obs}/\log [L]$ profile for L = Glyc at pH 6.97 (a) and 7.08 (b) and $[Co^{2+}] = 8 \times 10^{-3}$ M. The curves are calculated with the rate constants of Table 2.

$$\frac{d[Co(Cy)]}{dt} = \frac{\sum_{m} \sum_{n} k_{CyH_{n}}^{CoL_{m}} \beta_{CoL_{m}} \beta_{CyH_{n}} [L]^{m} [H]^{n}}{\sum_{n} \beta_{CyH_{n}} [H^{+}]^{n}} \times [Cy]_{tot} [Co^{2+}]_{tot}$$
(2)

from which eqn. (3) follows

 $k_{obs} =$

$$\frac{\left[\operatorname{Co}^{2^{+}}\right] \Sigma_{n} \Sigma_{m} k_{\operatorname{CyH}_{n}}^{\operatorname{CoL}_{m}} \beta_{\operatorname{CoL}_{m}} \beta_{\operatorname{CyH}_{n}} \left[\operatorname{L}\right]^{m} \left[\operatorname{H}^{+}\right]^{n}}{\Sigma_{n} \beta_{\operatorname{CyH}_{n}} \left[\operatorname{H}^{+}\right]^{n}}$$
(3)

with $\beta_{Co} = \beta_{Cy} = 1$ for m = n = 0. The free concentrations of Co²⁺ and L were calculated by the Newton-Raphson method using the protonation and stability constants taken from the literature (Table 1). The bimolecular rate constants $k_{CyH_n}^{CoLm}$ were then determined by fitting k_{obs} with eqn. (3) by a non-linear least-squares program. The quality of the fit can be seen from Figs. 1-4 and from the values of $\sigma_{\log k_{obs}}$ given in Table 2.

The results of Table 2 show that beside the free metal ion (Co^{2+}) the 1:1 complexes (CoL) and, in one case, also CoL_2 can react with the monoproto-

Fig. 3. Log $k_{obs}/\log [L]$ profile for L = Mal at pH 6.94 (a) and 7.06 (b) and $[Co^{2+}] = 8 \times 10^{-3}$ M. The curves are calculated with the rate constants of Table 2.

Fig. 4. Log $k_{obs}/\log [L]$ profile for L = Tri at pH 7.02 (a) and 7.24 (b) and $[Co^{2+}] = 8 \times 10^{-3}$ M. The curves are calculated with the rate constants of Table 2.

nated form of the macrocycles CyH^+ . Only in the case of tricarballylic acid was a bimolecular path involving CyH_2^{2+} found, probably because the 1:1 complex Co(Tri)⁻ has a negative charge, which makes a reaction with a dipositive ion CyH_2^{2+} electrostatically favourable.

TABLE 1. Protonation and Co^{2+} stability constants of the ligands L used for the calculation of the species distribution

Ligand L ^a	Protonation constants			Stability constants		Reference
	$\log \beta_{LH}$	$\log \beta_{LH_2}$	$\log \beta_{LH_3}$	$\log \beta_{CoL}$	$\log \beta_{CoL_2}$	
Pic	4.95			6.00	10.80	8
Glyc	3.57			1.48		9
Mal	5.08	7.65		2.66		9
Tri	5.95	10.58	14.08	2.44		8

^aPic = α-picolinate, Glyc = glycolate, Mal = malonate, Tri = tricarballylate.

Ligand	k _{Co} ^{CyH}	k ^{CyH} CoL	k ^{CyH} _{CoL₂}	k _{CoL} ^{CyH} ²	Nª	σ ^b
Pic	$2.1(1) \times 10^4$	$2.6(1) \times 10^4$	$2.0(1) \times 10^4$		20	0.013
Glyc	$2.1(1) \times 10^4$	$1.5(1) \times 10^5$			20	0.026
Mal	$2.1(2) \times 10^4$	$1.6(1) \times 10^5$			19	0.030
Tri	$2.5(1) \times 10^4$			20(1)	20	0.023

TABLE 2. Bimolecular rate constants (M^{-1} s⁻¹) and standard errors (in parentheses) for the reactions of eqn. (1) at 25 °C and I = 0.5 M (KNO₃)

^aNumber of experiments. ^b σ is the standard deviation of log k_{obs} after fitting with the values of this Table.

For CyH⁺, the charge plays a relatively small role. The less positive the charge of the complex the faster the complexation rate with the macrocycle. These results are fully consistent with those previously found for Ni²⁺ [4] and Cu²⁺ [5] and, as discussed there, we must assume that at least one intermediate must be a mixed-ligand complex, in which both the additional ligand L and the macrocycle Cy are coordinated. The pH-stat measurements, however, did not allow the detection of any such species. Finally, one can also note that the rates for the Co²⁺ complexes are between those of the Cu²⁺ and the Ni²⁺ complexes, as expected from the solvent exchange rate of these ions.

Acknowledgement

This work was supported by the Swiss National Science Foundation (Project 20.5372.87) and this is gratefully acknowledged.

References

- 1 A. Leugger, L. Hertli and Th. A. Kaden, *Helv. Chim.* Acta, 61 (1978) 2296; E. Kimura and M. Kodama, Yuki Gosei Kagaku Kyokaishi, 35 (1977) 632, and refs. therein.
- 2 R. Buxtorf and Th. A. Kaden, *Helv. Chim. Acta*, 57 (1974) 1035; W. Steinmann and Th. A. Kaden, *Helv. Chim. Acta*, 58 (1975) 1358.
- 3 C. T. Rorabacher, G. R. Cayley and D. M. Margerum, *Inorg. Chem.*, 14 (1975) 919; Th. A. Kaden, *Helv. Chim. Acta*, 53 (1970) 617.
- 4 Yi-he Wu and Th. A. Kaden, *Helv. Chim. Acta*, 67 (1984) 1868.
- 5 Yi-he Wu and Th. A. Kaden, Helv. Chim. Acta, 68 (1985) 1611.
- 6 E. K. Barefield, E. Wagner, A. W. Herlinger and A. R. Dahl, *Inorg. Synth.*, 16 (1976) 220.
- 7 H. Gampp, M. Mäder and A. D. Zuberbühler, *Talanta*, 27 (1980) 1037.
- 8 L. G. Sillen and A. E. Martell, Stability Constants of Metal Ion Complexes, The Chemical Society, London, 1964.
- 9 A. E. Martell and R. M. Smith, Critical Stability Constants, Vol. 5, Plenum, New York, 1982.