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Abstract 

The kinetics of the oxidation of quinol by Mn- 

(bipy), 3+,q ions have been investigated at 25 “C in 
aqueous perchlorate media using a high excess of 
H,Q. The observed kinetic order in [Mn(bipy),3+] 
is unity and the linear plots of the reciprocal of the 
pseudo first order rate constant against [H,Q]-’ 
show that intermediate complexes are involved. From 
the manner in which the slopes of these latter plots 
vary with acidity, it is suggested that these reactive 
intermediate complexes are Mn(bipy),HQ2+, and 

MnWwMWHQ+,. The mechanism of this reac- 
tion is compared with those suggested for the oxida- 
tion of quinol by aqua cations and by cations without 
a water molecule present in the inner sphere. 

Introduction 

Following our kinetic investigations of the oxida- 
tion of hydrogen peroxide [l], hydrazoic acid [2] 
and bromide ions [3] by bis(2,2’-bipyridine)manga- 
nese(II1) ions in aqueous perchlorate media, we now 
rgport a kinetic investigation of the oxidation of 
quinol by this complex. Detailed kinetic studies have 
been made of the oxidation of auinol bv aqua 
cations, such as Fe”$ [4], Mn”’ aq [5JiCe’J,g kl, 
Vv, [7], CO’“‘~, [8], Tl”‘, 193, Np aq [lo] and 
PUVT aq and Pu~~,~ [ 111, by cations complexed with 
other ligands, such as Fe(phen)33+ [12], [Ni”‘- 
cyclam] 3+ [ 131, [Ni”‘bis(l,4,7-triazacyclonane)] 
1141 and [Nil%etraazamacrocycles] [ 151, and by _ 
anionic oxidants, such as IrBre2-, IrCle2- and 
[IrC1sH20]- [ 161, Mo(CN)s3- and Fe(CN)63- [ 171 
and 12-tungstocobaltate(II1) [ 181. In addition, the 
kinetics of the oxidation of quinol by an electrically 
neutral transition metal complex, [IrC14(H20)?, have 
been investigated [ 161. 
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Experimental 

Solutions of bis(2,2’-bipyridine)manganese(III) 
ions were prepared by the anodic oxidation of tris- 
(2,2’-bipyridine)manganese(II) ions, as described 
previously [19]. Laboratory grade quinol was 
purified by sublimation under vacuum; all other 
materials were as described earlier [l-3] . 

Rates of decay of bis(2,2’-bipyridine)manganese- 
(III) ions in the presence of quinol were followed at 
490 nm using a Durrum-Gibson stopped flow 
spectrophotometer and reaction traces were 
photographed from the storage screen of a Telequip- 
ment DM 64 oscilloscope. Absorbances were mea- 
sured using a Unicam SP 500 Series 2 spectropho- 
tometer. 

Results and Discussion 

Stoichiometry 
As quinol reacts with Fe”’ ions [4], concentra- 

tions of Mn(bipy)23+ were determined spectropho- 
tometrically [ 191 at a wavelength where light 
absorbance from benzoquinone is not involved [4]. 
The reaction was investigated using an excess of 
Mn(bipy)23+ over quinol H2Q, estimating the con- 
centration of the Mn”’ complex before and after the 
oxidation using direct spectrophotometry at 490 nm 
with the extinction coefficient for the complex E = 
2.10 X lo2 dm3 mol-’ cm-’ [19]. Ionic strength 
was adjusted to 1.00 mol dmp3 by adding sodium 
perchlorate. Table 1 shows that the value for the 
consumption ratio IA [Mn”‘] l/IA [H2Q]l is invariant 
with the concentration of perchloric acid, the mean 
value of this ratio in the range 0.4-1.00 mol dm-3 
HClO,, being 2.01 f 0.04. We conclude that the 
stoichiometry is represented by eqn. (1) in agreement 

2Mn”’ + H2Q ----+ 2Mn” + 2H++ benzoquinone 
(1) 

with the reactions of quinol with other oxidizing 
cations [5-181. 
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TABLE 1. Consumption ratio for the oxidation of quinol by Mn(bipy)zSao at 20 “c and an ionic strength = 1 .OO mol dme3 with 

varying acidities and a constant total [bipy] = 1 .13 X lop3 mol dm-3 

W’l Initial [MnrI’] 

(mol dmp3) (loa mol dm-3) 

Initial [HzQ] 

(10” mol dmm3) 
IA [Mn’II] I 
IA WzQI I 

0.40 8.3 2.50 2.07 

0.40 8.3 4.00 1.98 

0.60 10.1 2.50 2.08 

0.60 10.1 5 .oo 1.97 

0.80 8.9 2.50 2.00 

0.80 8.9 4 .oo 1.98 

1 .oo 8.9 2.50 2.02 

1 .oo 8.9 4 .oo 1.98 

Kinetics at 25.4 “C 
Owing to the absorbance of light by benzoquinone 

at 400 nm, the wavelength used [l-3] in the investi- 
gations of the oxidations of other substrates by 

Mn(bipy)z3+, stopped-flow traces were measured at 
490 nm. As the extinction coefficient for 
Mn(bipy)s3+ at 490 nm f490 < e400, initial con- 
centrations of Mn(bipy)s3+ were higher than those 
used in the investigations of the kinetics with other 
substrates. An initial [Mn(bipy)s3+] - 6 X 1O-4 mol 
dmW3 was used and this resulted in the use of a more 
limited range of [HC104] than before. 

The decay of Mn(bipy)s3+ at [HC104] = 0.40 mol 
dmP3 with an ionic strength = 1 .OO mol dmP3 
adjusted by the addition of sodium perchlorate was 
first order for [H2Q] = O.OlLO.10 mol dmm3. A plot 
of the pseudo first order rate constant k, against 
[HsQ] is a curve, but a plot of k,-’ against [HsQ]-’ 
is linear with an intercept on the k,-’ axis (Fig. 1). 
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Fig. 1. Plots of ko-’ against [HaQ]-’ for the oxidation of 

quinol by Mn(bipy)z3’as at an ionic strength = 1.00 mol 

dmp3 and at 25.4 “c with [HCIO4] (mol dm”) varying as 

follows: x, 0.40; o, 0.60; A, 0.80; l , 1.00. 

The values for k, are collected in Table 2 and these 
show that k, is unchanged when the sodium per- 
chlorate used to adjust the ionic strength to 1 .OO mol 
dmP3 is replaced by lithium perchlorate. 

Similar linear plots for log[Mn(bipy)s3+] against 
time were obtained at [HC104] = 0.60,0.80 and 1.00 
mol dm-3 and plots of k,-’ against [HsQ]-r were 
linear for constant acidity (Fig. 1). All the values for 
k, are given in Table 2. This Table shows that 
increasing the added concentration of 2,2’-bipyridine 
at 1 .OO mol dmP3 HC104 has no effect on the rate 
constant. 

Mechanism of the Oxidation 
The linearity of the plots of k,-’ against [H,Q]-’ 

in Fig. 1 shows that intermediate complexes are 
involved in the oxidation. It is assumed that these 
involve only a ratio of Mn”‘:HaQ = 1.0 and the 
various possibilities for the pre-equilibria are given in 
eqns. (2)-(8). 

Mn(bipy) 3+ 
Kh 

2 W F Mn(bipy),OH’+, + H’._ (2) 

Mn(bipy)s3+,, + H2Qaq - 3 Mn(bipy)dLQ3+q (3) 

3+ 
Mn@iw)2 hQaq 

K1 
__1 Mn(bipy),HQ’+,, t H+, 

(4) 
K2 

Mn(bipy)2 HQ2+, + 

Mn(bipy),(OH)HQ+, + H’, (5) 

P’ 
Mn(bipy),0H2+, + H2Qas + 

Mn(bipyMOWH2Q2+aq (6) 

K3 

Mn(bipyMWH2Qag + 
WbiwMWHQ+, + H+, (7) 

I, 

Mn(bipy),OH’+,, + H2Qas 2 Mn(bipy),HQ’+, (8) 
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Mn(bipy)2(OH)HzQ2+a4 2 

’ Mn”, + HQ., + 2bipy, (11) 

k4 
Mn(bWMOWHQ”, - 

Mn”, t HQ., + 2bipy, (12) 

which, in turn, will be followed by the rapid conver- 
sion of the semiquinone HQ. to benzoquinone via 
(13) [4-181 

Mn"' t HQ. 
fast 

- Mn” t benzoquinone + H+ (13) 

As K&-l >> 1 (h = [H+]) [ 191, the rate of decay 
of all species of Mn(bipy)23+ will be given by (14) 

- (d[Mn”‘] total/dr) = {2(/c& t kz/?rKlh-’ 

+ k4P1K1K2h-2)[Mn1111~~ FLQI )I 
(Khh-’ + fll(l + K,h-’ + K,K2K2)[H2Q]} (14) 

bearing in mind the indistinguishable sets of pre- 
equilibria and that (11) is also indistinguishable 
kinetically from (10). The pseudo first order rate 
constant k, is then given by (15) and the slopes S 

1 Khh -= 

ko 2Pr(W2 + k&rh + U,KdFLQl 

h2 + Klh + KlK2 
t 

2(k,h2 + k2Klh + kfilK2) 
(19 

TABLE 2. Pseudo first order rate constants k, for the oxida- 

tion of quinol by Mn(bipy)z3+,, with varying [HC104] at 

25.4 “c and an ionic strength = 1.00 mol dmp3 adjusted with 

additions of NaC104 and at a constant total [bipy] = 1.13 X 

low3 mol dme3 for an initial [MnlI1] - 6 X lo4 mol dmp3 

[H+] (mol dmm3) [ HzQ] (10” mol dme3) k, (s-l) 

0.40 1 .oo 8.6 

0.40 1.02 7.7a 

0.40 2.00 12.4 

0.40 2.04 11.6a 

0.40 3 .oo 17.5 

0.40 3.06 15.7a 

0.40 4.00 22.2 

0.40 4.90 20.8 

0.40 7.4 25.6 

0.40 9.8 27.8 

0.40 9.91 28.0’ 

0.60 0.95 5.5 

0.60 1.49 6.7 

0.60 1.99 10.3 

0.60 2.46 10.1 

0.60 2.99 12.2 

0.60 3.98 13.3 

0.60 4.93 15.2 

0.60 7.4 20.0 

0.60 9.8 24.4 

0.80 0.95 4.9 

0.80 1.49 7.6 

0.80 1.99 8.9 

0.80 2.46 10.9 

0.80 3.00 10.8 

0.80 4 .oo 12.4 

0.80 4.93 14.5 

0.80 7.4 18.1 

1 .oo 0.95 4.1 

1.00 1 .oo 3.9 

1.00 1 .oo 4.2b 

1.00 1.49 6.5 

1 .oo 2.00 7.8 

1 .oo 2 .oo 7.3b 

1.00 3 .oo 9.8 

1.00 4.00 13.0 

1.00 4.90 13.0b 

1 .oo 7.4 14.5 

1 .oo 9.8 19.6 

aIonic strength adjusted to 1.00 mol dmp3 with the addition 

of LiC104. bTotal added [bipy] = 5.13 X lop3 mol dm-3. 

Some of these combinations of preequilibria are 
mutually indistinguishable: (3) + (4) and (2) + (8); 

(3) + (4) + (5), (2) + (6) + (7) and (2) + (8) + (5). 
Possible rate determining redox steps are (9)-(12) 

kl 

MWpy)2H2Q3+w ---+ 

Mn”, t HQ., t H+_ t 2bipy, (9) 

Mn(bipyhHQ2+, 
kz 

- Mn”, t HQ., + 2bipy, 

(10) 

of the linear plots of k,-’ versus [H2Ql-1 will be 
given by (16) 

sI = 2Pr(krh + Wr + WGKzh-‘) 

Kh 
(16) 

Values for the slopes of the lines in Fig. 1 are 
collected in Table 3 and Fig. 2 shows that S’ against 
h-’ gives a linear plot with an intercept on the S’ 
axis. For (16) to apply to this plot, klh << (k2K1 + 
k4K1K2h-‘). This will give values of k2f11K1Khp1 = 
75 f40 s-l and k4f11K1K2Kh-‘= 17Ok 30 dm3 
mol-’ se1 at 25.4 “C. 

TABLE 3. Values of the slopes S with standard errors deter- 

mined by the least-squares procedure of the plots of k,’ VS. 

[HaQJ-’ for the oxidation of quinol by Mn(bipy)23+as at 
25.4 “c with ionic strength = 1.00 mol dmp3 

W+l 
(mol dme3) 

s 
(1O-3 dme3mol s) 

0.40 1 .OO + 0.06 

0.60 1.48 f 0.07 

0.80 1.61 +O.lO 

1 .oo 2.11 + 0.08 
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1 2 3 

h-’ I dm3 mol-’ 1 

Fig. 2. Plot of the variation of the reciprocal of the slope (S) 

of the plots of ko-’ against [HzQ]-’ with the reciprocal of 

the hydrogen ion concentration (h) for an ionic strength = 

1 .OO mol dme3 and 25.4 “C. 

Comparison with Other Oxidants 
The linearity of the plots of k,-’ versus [H&-r 

shows that at least one intermediate complex is 
involved in the oxidation by Mn(bipy)13+, and k, is 
decreased by increasing acidity. This can be compared 
with the results for a series of aqua cations. No inter- 
mediate complexes were detected for Fe”‘, [4], 

NP”‘, [lo], Puvl,, [ 111, PuIVaq [ 111, [IrClsHaO]- 
[ 161 and [IrC14(H20)a [16] ; oscilloscope traces 
suggest that they may be involved with Mn”Ia, [S] 
and Co”’ aq [8Land the kinetics show that they are 
involved for V aq [7], CeIV,,-, [6] and Tl”‘, [9]. 
Where the effect of changes in the hydrogen ion 
concentration h on the rate constant has been 
investigated, a wide spectrum of effects is observed. 
The rate constant increases with decreasing h for 
Fe’“, [4], Mnl’Iaq [5], Tl”H, [9] and Puv’, [ 111, 
increases with increasing h for Vv 
dent of h for CeIV, [6], NpV1,, 

aq [7], is indef;n- 
[lo] and Pu 

[ 1 l] and varies differently with h for CO”‘~~ a: 
cording to the conditions [8]. For ions possessing 
at least one water molecule in the first coordination 
sphere reacting with acidic substrates, ambiguities of 
interpretation of variations of rate with h exist: the 
h variation can be ascribed either to the hydrolysis 
of the metal ion or to the acid dissociation of the sub- 
strate, or to a combination of both. However, as the 
acid dissociation constant for H,Q + HQ- t H+ is low 
(K, = 1.22 X lo-” at 28.2 “C) [4], the participation 
of the species HQ- in high acidities has been 
questioned. Indeed, for the small retardations with 
increasing h observed with [Ni”‘(cyclam)] [ 131, 
[Nitetraazamacrocycles] [ 151 and [Ni”‘bis( 1,4,7- 
triazacyclononane] 1141 as oxidants, the participation 
of the protonation equilibrium (17) is proposed. 

M. P. Heyward and C. F. Wells 

H+aq 
K, 

+ HzQac, = H,Q+a, (17) 

Thus, with aqua cations as oxidants, a combination of 
equilibrium (17) for the substrate and the hydrolytic 
equilibrium of the cation would be invoked, similar 
to the situation found in the oxidation of alcohols by 
Mn”$ [20] and Co”‘, [21]. However, against this 
proposed participation of equilibrium (17) in the 
oxidation of quinol is the unexpected absence of any 
variation of rate with h found with the oxidants 
Fe(phen)33+ [ 121, 12-tungstocobaltate(II1) [ 181 and 
IrC16*- [ 161 and the low value of K, 5 0.01 dm3 
mol-r for quinol deduced [22] by comparison with 
the equilibrium measurements made on other organic 
hydroxy compounds: this experimental estimate for 
K, 2 0.01 dm3 mol-’ has recently been confirmed 
[23] and contrasts with K, = 0.22-0.24 dm3 mol-’ 
calculated [ 13, 141 from the kinetic variations. How- 
ever, as found in the present oxidation and in those 
involving similar acidic substrates, the presence of 
H2Q in either an inner or outer sphere complex can 
increase K, by stabilizing HQ- in proximity to the 
cation, so that this anion can participate in the 
mechanism. Intermediate complexes were also 
detected in the oxidations of Br- [3], Hz02 [l] and 
HN3 [2] by Mn(bipy)23+,, and in the last two cases 
[ 1, 21 the acid dissociation of the substrate ligand is 
facilitated by its juxtaposition with the Mn3+ ion. 
Moreover, in the oxidation of HNs by Ni(bipy)33+, 
where the intermediate involvement of N3- is shown 
by the kinetic dependence on h, K, for HN3 must be 
increased by its presence in an outer sphere complex 
with Ni(bipy)33+ [24]; the involvement of outer 
sphere complexes with Ni(bipy)33+ was established 
kinetically for the oxidation of chloride ions by 
Ni(bipy)33’ [25]. Therefore, in the oxidations of 
H2Q by cations M”+, discussed above, an increase, a 
decrease or an independence of rate constant with h 
could result from the formation of intermediate 
complexes, inner or outer sphere, in which K, for 
H2Q in the complex is increased, with the individual 
dependency on h arising from the particular balance 
between the kinetic and thermodynamic stabilities of 
M”+HaQ and M”+HQ- with that cation Mn+. 
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