Kinetics of the Oxidation of Quinol by Bis(2,2'-bipyridine)manganese(III) Ions in Aqueous Perchlorate Media

MALCOLM P. HEYWARD and CECIL F. WELLS*

Department of Chemistry, University of Birmingham, Edgbaston, P.O. Box 363, Birmingham B15 2TT (U.K.) (Received February 28,1989; revised July 18,1989)

Abstract

The kinetics of the oxidation of quinol by Mn- $(bipy)_2^{3+}$ _{aq} ions have been investigated at 25 °C in aqueous perchlorate media using a high excess of H_2Q . The observed kinetic order in $[Mn(bipy)_2^{3+}]$ is unity and the linear plots of the reciprocal of the pseudo first order rate constant against $[H₂Q]^{-1}$ show that intermediate complexes are involved. From the manner in which the slopes of these latter plots vary with acidity, it is suggested that these reactive intermediate complexes are $Mn(bipy)_2HQ^{2+}$ _{aq} and $Mn(bipy)_2(OH)HQ^+_{aq}$. The mechanism of this reaction is compared with those suggested for the oxidation of quinol by aqua cations and by cations without a water molecule present in the inner sphere.

Introduction

Following our kinetic investigations of the oxidation of hydrogen peroxide [l], hydrazoic acid [2] and bromide ions [3] by $bis(2,2')$ -bipyridine)manganese(II1) ions in aqueous perchlorate media, we now rgport a kinetic investigation of the oxidation of quinol by this complex. Detailed kinetic studies have been made of the oxidation of auinol bv aqua cations, such as $\text{Fe}^{\text{III}}_{\text{aq}}$ [4], Mn¹¹¹_{aq} [5], Ce^{IV}_{aq} [6], V_{aa} [7], Co¹¹¹_{aq} [8], T¹¹¹_{aq} [9], Np^{v_{1}aq} [10] and</sup> Pu^{VI} _{ag} and Pu^{IV} _{ag} [11], by cations complexed with other ligands, such as $Fe(phen)_3$ ³⁺ [12], [Ni¹¹¹cyclam]³⁺ [13], [Ni¹¹¹bis(1,4,7-triazacyclona 14] and $[Ni¹¹$ tetraazamacrocycles] $[15]$, and by anionic oxidants, such as $IrBr_6^{2-}$, $IrCl_6^{2-}$ and $[IrCl₅H₂O]$ ⁻ [16], Mo(CN)₈³⁻ and Fe(CN)₆³⁻ [17] and 12-tungstocobaltate(II1) [181. In addition, the kinetics of the oxidation of quinol by an electrically neutral transition metal complex, $[IrCl₄(H₂O)₂$, have been investigated [16].

Experimental

Solutions of bis(2,2'-bipyridine)manganese(III) ions were prepared by the anodic oxidation of tris- (2,2'-bipyridine)manganese(II) ions, as described previously [19]. Laboratory grade quinol was purified by sublimation under vacuum; all other materials were as described earlier $[1-3]$.

Rates of decay of $bis(2,2'.bipyridine)$ manganese-(III) ions in the presence of quinol were followed at 490 nm using a Durrum-Gibson stopped flow spectrophotometer and reaction traces were photographed from the storage screen of a Telequipment DM 64 oscilloscope. Absorbances were measured using a Unicam SP 500 Series 2 spectrophotometer.

Results and Discussion

Stoichiometry

As quinol reacts with Fe^{III} ions [4], concentrations of $Mn(bipy)_2^{3+}$ were determined spectrophotometrically [19] at a wavelength where light absorbance from benzoquinone is not involved [4]. The reaction was investigated using an excess of $Mn(bipy)_2^{3+}$ over quinol H_2Q , estimating the concentration of the Mn^{III} complex before and after the oxidation using direct spectrophotometry at 490 nm with the extinction coefficient for the complex ϵ = 2.10×10^2 dm³ mol⁻¹ cm⁻¹ [19]. Ionic strength was adjusted to 1.00 mol dm⁻³ by adding sodium perchlorate. Table 1 shows that the value for the consumption ratio $|\Delta[\text{Mn}^{\text{III}}]|/|\Delta[\text{H}_2\text{Q}]|$ is invariant with the concentration of perchloric acid, the mean value of this ratio in the range $0.4-1.00$ mol dm⁻³ $HClO₄$ being 2.01 ± 0.04 . We conclude that the stoichiometry is represented by eqn. (1) in agreement $2Mn^{III} + H_2O \longrightarrow 2Mn^{II} + 2H^+$ benzoquinone

(1)

with the reactions of quinol with other oxidizing cations $[5-18]$.

0 Elsevier Sequoia/Printed in Switzerland

0020-1693/89/\$3 SO

^{*}Author to whom correspondence should be addressed.

$[H^+]$ (mol dm ⁻³)	Initial [Mn ^{III}] $(10^{-4} \text{ mol dm}^{-3})$	Initial $[H_2Q]$ $(10^{-4} \text{ mol dm}^{-3})$	Δ [Mn ^{III}] [{] $ \Delta[H_2Q] $
0.40	8.3	2.50	2.07
0.40	8.3	4.00	1.98
0.60	10.1	2.50	2.08
0.60	10.1	5.00	1.97
0.80	8.9	2.50	2.00
0.80	8.9	4.00	1.98
1.00	8.9	2.50	2.02
1.00	8.9	4.00	1.98

TABLE 1. Consumption ratio for the oxidation of quinol by $Mn(bipy)_2^3$ aq at 20 °C and an ionic strength = 1.00 mol dm⁻³ with varying acidities and a constant total [bipy] = 1.13×10^{-3} mol dm⁻³

Kinetics at 25.4 "C

Owing to the absorbance of light by benzoquinone at 400 nm, the wavelength used $[1-3]$ in the investigations of the oxidations of other substrates by $Mn(bipy)₂$ ³⁺, stopped-flow traces were measured at 490 nm. As the extinction coefficient for Mn(bipy)_{2} ³⁺ at 490 nm $\epsilon_{490} < \epsilon_{400}$, initial concentrations of $Mn(bipy)_2^{3+}$ were higher than those used in the investigations of the kinetics with other substrates. An initial $[Mn(bipy)_2^{3+}] \sim 6 \times 10^{-4}$ mol dm^{-3} was used and this resulted in the use of a more limited range of $[HClO₄]$ than before.

The decay of $Mn(bipy)_2^{3+}$ at $[HClO_4] = 0.40$ mol dm^{-3} with an ionic strength = 1.00 mol dm⁻³ adjusted by the addition of sodium perchlorate was first order for $[H_2Q] = 0.01 - 0.10$ mol dm⁻³. A plot of the pseudo first order rate constant k_0 against $[H_2Q]$ is a curve, but a plot of k_o^{-1} against $[H_2Q]^{-1}$ is linear with an intercept on the k_0 ⁻¹ axis (Fig. 1).

Fig. 1. Plots of k_0^{-1} against $[H_2Q]^{-1}$ for the oxidation of quinol by $Mn(bipy)_{2}^{3+}$ at an ionic strength = 1.00 mol dm^{-3} and at 25.4 °C with [HClO₄] (mol dm⁻³) varying as follows: \times , 0.40; \circ , 0.60; \triangle , 0.80; \bullet , 1.00.

The values for k_0 are collected in Table 2 and these show that k_0 is unchanged when the sodium perchlorate used to adjust the ionic strength to 1 .OO mol dm^{-3} is replaced by lithium perchlorate.

Similar linear plots for $log[Mn(bipy)₂^{3+}]$ against time were obtained at $[HClO₄] = 0.60, 0.80$ and 1.00 mol dm⁻³ and plots of k_0 ⁻¹ against $[H_2Q]$ ⁻¹ were linear for constant acidity (Fig. 1). All the values for k_0 are given in Table 2. This Table shows that increasing the added concentration of 2,2'-bipyridine at 1.00 mol dm⁻³ HClO₄ has no effect on the rate constant.

Mechanism of the Oxidation

The linearity of the plots of k_0^{-1} against $[H_2Q]^{-1}$ in Fig. 1 shows that intermediate complexes are involved in the oxidation. It is assumed that these involve only a ratio of Mn^{III} : $H_2O = 1.0$ and the various possibilities for the pre-equilibria are given in eqns. (2) – (8) .

$$
Mn(bipy)_2^{3+}aq \xrightarrow{Kh} Mn(bipy)_2OH^{2+}aq + H^+aq \qquad (2)
$$

$$
\text{Mn(bipy)}_2^{3+}a_q + \text{H}_2\text{Q}_{aq} \xrightarrow{\beta_1} \text{Mn(bipy)}_2\text{H}_2\text{Q}^{3+}a_q \quad (3)
$$

$$
Mn(bipy)_2^{3+}H_2Q_{aq} \xleftarrow{K_1} Mn(bipy)_2HQ^{2+}aq + H^+aq
$$
\n(4)

$$
Mn(bipy)_2 HQ^{2+}_{aq} \xleftarrow{K_2}
$$

$$
Mn(bipy)2(OH)HQ+aq + H+aq (5)
$$

$$
Mn(bipy)_2OH^{2+}aq + H_2Q_{aq} \xleftarrow{\beta'}Mn(bipy)_2(OH)H_2Q^{2+}aq
$$
 (6)

$$
Mn(bipy)_2(OH)H_2Q_{aq} \xleftarrow{K_3}
$$

$$
Mn(bipy)_2(OH)HQ^*_{aq} + H^*_{aq} \qquad (7)
$$

$$
Mn(bipy)_2OH^{2+}_{\text{aq}} + H_2Q_{\text{aq}} \xrightarrow{\beta''_1} Mn(bipy)_2HQ^{2+}_{\text{aq}}(8)
$$

TABLE 2. Pseudo first order rate constants k_0 for the oxidation of quinol by $Mn(bipy)_2^{3+}$ _{ag} with varying [HClO₄] at 25.4 °C and an ionic strength = 1.00 mol dm⁻³ adjusted with additions of NaClO₄ and at a constant total [bipy] = $1.13 \times$ 10^{-3} mol dm⁻³ for an initial $[Mn^{III}] \sim 6 \times 10^{-4}$ mol dm⁻³

$[H^+]$ (mol dm ⁻³)	$[H2Q]$ (10 ⁻² mol dm ⁻³)	$k_{o}(s^{-1})$
0.40	1.00	8.6
0.40	1.02	7.7 ^a
0.40	2.00	12.4
0.40	2.04	11.6 ^a
0.40	3.00	17.5
0.40	3.06	15.7 ^a
0.40	4.00	22.2
0.40	4.90	20.8
0.40	7.4	25.6
0.40	9.8	27.8
0.40	9.91	$28.0^{\textcolor{red}{\textbf{a}}}$
0.60	0.95	5.5
0.60	1.49	6.7
0.60	1.99	10.3
0.60	2.46	10.1
0.60	2.99	12.2
0.60	3.98	13.3
0.60	4.93	15.2
0.60	7.4	20.0
0.60	9.8	24.4
0.80	0.95	4.9
0.80	1.49	7.6
0.80	1.99	8.9
0.80	2.46	10.9
0.80	3.00	10.8
0.80	4.00	12.4
0.80	4.93	14.5
0.80	7.4	18.1
1.00	0.95	4.1
1.00	1.00	3.9
1.00	1.00	$4.2^{\,b}$
1.00	1.49	6.5
1.00	2.00	7.8
1.00	2.00	7.3 ^b
1.00	3.00	9.8
1.00	4.00	13.0
1.00	4.90	13.0 ^b
1.00	7.4	14.5
1.00	9.8	19.6

^aIonic strength adjusted to 1.00 mol dm^{-3} with the addition of LiClO₄. **b**Total added [bipy] = 5.13×10^{-3} mol dm⁻³.

Some of these combinations of pre-equilibria are mutually indistinguishable: $(3) + (4)$ and $(2) + (8)$; $(3) + (4) + (5)$, $(2) + (6) + (7)$ and $(2) + (8) + (5)$. Possible rate determining redox steps are (9) - (12)

$$
Mn(bipy)_2H_2Q^{3+}_{aq} \xrightarrow{k_1} \qquad Mn^{II}_{aq} + HQ_{aq} + H^{+}_{aq} + 2bipy_{aq} \qquad (9)
$$

$$
Mn(bipy)_2HQ^{2+}aq \xrightarrow{k_2} Mn^{II}aq + HQ \cdot_{aq} + 2bipy_{aq}
$$
\n(10)

$$
Mn(bipy)2(OH)H2Q2+aq K3
$$

$$
MnIIaq + HQ·aq + 2bipyaq
$$
 (11)

$$
Mn(bipy)2(OH)HQ+aq K4
$$

$$
MnIIaq + HQ+aq + 2bipyaq
$$
 (12)

which, in turn, will be followed by the rapid conversion of the semiquinone $HO⁺$ to benzoquinone via (13) [4-18]

$$
Mn^{III} + HQ \cdot \xrightarrow{fast} Mn^{II} + benzoguinone + H^* \quad (13)
$$

As $K_{\nu}h^{-1}\gg 1$ (h = [H⁺]) [19], the rate of decay of all species of $Mn(bipy)$,³⁺ will be given by (14)

$$
-(d[Mn^{III}]_{total}/dt) = {2(k_1\beta_1 + k_2\beta_1K_1h^{-1} + k_4\beta_1K_1K_2h^{-2})[Mn^{III}]_{total}[H_2Q]}/(K_hh^{-1} + \beta_1(1 + K_1h^{-1} + K_1K_2h^{-2})[H_2Q] \}
$$
 (14)

bearing in mind the indistinguishable sets of preequilibria and that (11) is also indistinguishable kinetically from (10). The pseudo first order rate constant k_0 is then given by (15) and the slopes S

$$
\frac{1}{k_o} = \frac{K_h h}{2\beta_1 (k_1 h^2 + k_2 K_1 h + k_4 K_1 K_2) [\text{H}_2 \text{Q}]}
$$

$$
+ \frac{h^2 + K_1 h + K_1 K_2}{2(k_1 h^2 + k_2 K_1 h + k_4 K_1 K_2)}
$$
(15)

of the linear plots of k_0^{-1} versus $[H_2Q]^{-1}$ will be given by (16)

$$
S^{-1} = \frac{2\beta_1(k_1h + k_2K_1 + k_4K_1K_2h^{-1})}{K_h}
$$
 (16)

Values for the slopes of the lines in Fig. 1 are collected in Table 3 and Fig. 2 shows that S^{-1} against h^{-1} gives a linear plot with an intercept on the S^{-1} axis. For (16) to apply to this plot, $k_1 h \ll (k_2 K_1 +$ $k_4K_1K_2h^{-1}$). This will give values of $k_2\beta_1K_1K_1h^{-1}$ = $75 \pm 40 \text{ s}^{-1}$ and $k_4\beta_1K_1K_2K_h^{-1} = 170 \pm 30 \text{ dm}^3$ mol⁻¹ s⁻¹ at 25.4 °C.

TABLE 3. Values of the slopes S with standard errors determined by the least-squares procedure of the plots of k_0 ⁻¹ vs. H_2O1^{-1} for the oxidation of quinol by Mn(bipy) 2^{3+} _{ng} at 25.4 °C with ionic strength = 1.00 mol dm⁻³

$[H^+]$ $(mod \text{ } dm^{-3})$	S $(10^{-3}$ dm ⁻³ mol s)
0.40	1.00 ± 0.06
0.60	1.48 ± 0.07
0.80	1.61 ± 0.10
1.00	2.11 ± 0.08

Fig. 2. Plot of the variation of the reciprocal of the slope (S) of the plots of k_0^{-1} against $[H_2Q]^{-1}$ with the reciprocal of the hydrogen ion concentration (h) for an ionic strength = 1.00 mol dm⁻³ and 25.4 °C.

Comparison with Other Oxidants

The linearity of the plots of k_0^{-1} versus $[H_2Q]^{-1}$ shows that at least one intermediate complex is involved in the oxidation by $Mn(bipy)_2^{3+}$ and k_0 is decreased by increasing acidity. This can be compared with the results for a series of aqua cations. No intermediate complexes were detected for Fe^{III} _{aq} [4], Np^{VI} _{aq} [10], Pu^{VI} _{aq} [11], Pu^{IV} _{aq} [11], $[IrCl_5H_2O]$ ⁻ [16] and $[IrCl_4(H_2O)_2$ [16], oscilloscope traces suggest that they may be involved with Mn^{III} _{aq} [5] and $Co¹¹¹_{aa}$ [8] and the kinetics show that they are involved for V_{aa}^{\vee} [7], Ce^{IV}_{aa} [6] and Tl_{aa}^{III} [9]. Where the effect of changes in the hydrogen ion concentration *h* on the rate constant has been investigated, a wide spectrum of effects is observed. The rate constant increases with decreasing *h* for $\text{Fe}^{\text{III}}_{\text{aa}}$ [4], Mn¹¹¹_{aq} [5], Tl¹¹¹_{aq} [9] and Pu^{V1}_{aq} [11], increases with increasing *h* for Vv dent of *h* for Ce^{IV} ₈₀ [6], Np^{VI} ₈₀ $a_{\mathbf{q}}$ [7], is indepe [10] and Pu [11] and varies differently with *h* for $Co¹¹¹_{aa}$ ad cording to the conditions [8]. For ions possessing at least one water molecule in the first coordination sphere reacting with acidic substrates, ambiguities of interpretation of variations of rate with *h* exist: the *h* variation can be ascribed either to the hydrolysis of the metal ion or to the acid dissociation of the substrate, or to a combination of both. However, as the acid dissociation constant for $H_2Q \rightleftharpoons HQ^{-} + H^{+}$ is low $(K_a = 1.22 \times 10^{-10}$ at 28.2 °C) [4], the participation of the species HQ^- in high acidities has been questioned. Indeed, for the small retardations with increasing *h* observed with $[Ni^{III}(cyclam)]$ [13], [Nitetraazamacrocycles] $[15]$ and $[Ni^{III}bis(1,4,7-1)]$ triazacyclononane \vert [14] as oxidants, the participation of the protonation equilibrium (17) is proposed.

$$
H^{\dagger}_{aq} + H_2 Q_{aq} \xrightarrow{K_c} H_3 Q^{\dagger}_{aq} \tag{17}
$$

Thus, with aqua cations as oxidants, a combination of equilibrium (17) for the substrate and the hydrolytic equilibrium of the cation would be invoked, similar to the situation found in the oxidation of alcohols by Mn^{III} _{aq} [20] and Co^{III}_{aq} [21]. However, against this proposed participation of equilibrium (17) in the oxidation of quinol is the unexpected absence of any variation of rate with *h* found with the oxidants $Fe(phen)_{3}^{3+}$ [12], 12-tungstocobaltate(III) [18] and IrCl₆²⁻ [16] and the low value of $K_c \lesssim 0.01$ dm³ mol^{-1} for quinol deduced [22] by comparison with the equilibrium measurements made on other organic hydroxy compounds: this experimental estimate for $K_c \lesssim 0.01$ dm³ mol⁻¹ has recently been confirmed [23] and contrasts with $K_c = 0.22 - 0.24$ dm³ mol⁻¹ calculated $[13, 14]$ from the kinetic variations. However, as found in the present oxidation and in those involving similar acidic substrates, the presence of $H₂O$ in either an inner or outer sphere complex can increase K_a by stabilizing HQ^- in proximity to the cation, so that this anion can participate in the mechanism. Intermediate complexes were also detected in the oxidations of Br^{-} [3], H_2O_2 [1] and HN_3 [2] by $Mn(bipy)_2^{3+}$ _{aq}, and in the last two cases $[1, 2]$ the acid dissociation of the substrate ligand is facilitated by its juxtaposition with the Mn^{3+} ion. Moreover, in the oxidation of HN_3 by Ni(bipy)₃³⁺ where the intermediate involvement of N_3 ⁻ is shown by the kinetic dependence on h, K_a for HN_3 must be increased by its presence in an outer sphere complex with $Ni(bipy)_{3}^{3+}$ [24]; the involvement of outer sphere complexes with $Ni(bipy)_{3}^{3+}$ was established kinetically for the oxidation of chloride ions by Ni(bipy) 3^{3+} [25]. Therefore, in the oxidations of $H₂Q$ by cations $Mⁿ⁺$, discussed above, an increase, a decrease or an independence of rate constant with *h* could result from the formation of intermediate complexes, inner or outer sphere, in which K_a for $H₂Q$ in the complex is increased, with the individual dependency on *h* arising from the particular balance between the kinetic and thermodynamic stabilities of $M^{n+}H_2Q$ and $M^{n+}HQ^-$ with that cation M^{n+} .

References

- M. P. Heyward and C. F. Wells, *J. Chem. Sot., Faraday Trans. f, 84 (1988) 815.*
- *M.* P. Heyward and C. F. Wells, *J. Chem. Sot., Dalton Trans., (1988) 1331.*
- M. P. Heyward and C. F. Wells, *Inorg. Chim. Acta, I48 (1988) 241.*
- 4 J. H. Baxendale, H. R. Hardy and L. H. Sutcliffe, Trans. *Faraday Sot., 47 (195* 1) 963.
- G. Davies and K. Kustin, *Trans. Faraday Sot., 65 (1969) 1630; C.* F. Wells and L. V. Kuritsyn, *J.* Chem. Sot. *A,* (1970) 676.
- *6* C. F. Wells and L. V. Kuritsyn,J. *Chem. Sot. A,* (1969) *2575.*
- *7 C.* F. Wells and L. V. Kuritsyn, J. *Chem. Sot. A,* (1970) 1372; E. Pelizzetti, E. Mentasti, E. Pramauro and G. Saini,J. *Chem.* **SOC.,** *Dalton Trans.,* (1974) 1940.
- *8* C. F. Wells and L. V. Kuritsyn, J. *Chem. Sot. A, (1969) 2930; G.* Davies and K. 0. Watkins, J. *Phys. Chem., 74* (1970) *3388;* E. Mentasti, E. Pelizzetti and G. Giraudi, *J. Inorg. Nucl. Chem., 38* (1976) 795; C. F. Wells, A. F. M. Nazer and D. Mays, *J. Inorg. Nucl. Chem., 39* (1977) 2001.
- *9* E. Pelizzetti, E. Mentasti, M. E. Carlotti and G. Giraudi, *J. Chem. Sot., Dalton Trans., (1975) 794.*
- 10 K. Reinshmiedt, J. C. Sullivan and M. Woods, *Znorg. Chem., I2* (1973) 1639.
- 11 T. W. Newton, *J. Inorg. Nucl. Chem., 36* (1974) 639.
- *12* E. Mentasti and E. Pelizzetti, *Inf. J. Chem. Kin., 9* (1972) *215.*
- 3 J. C. Brodovitch, A. McAuley and T. Oswald, *Inorg. Chem., 21* (1982) *3442.*
- *14* A. McAuley, L. Spencer and P. R. West, *Can. J. Chem., 63* (1985) 1198.
- 15 A. McAuley, T. Oswald and R. I. Haines, *Can. J. Chem., 61* (1983) 1120.
- 16 E. Pelizzetti, E. Mentsati and C. Baiocchi, J. *Phys. Chem., 80* (1976) 2979; E. Pelizzetti, E. Mentasti and E. Pramauro, J. *Chem. Sot., Perkin Trans. II,* (1978) *620.*
- 17 E. Pelizzetti, E. Mentasti and E. Pramauro, *Inorg.* Chem., 17(1978) 1688.
- 18 Z. Amjad, J. C. Brodovitch and A. McAuley, Can. *J. Chem., 55 (1977) 3581.*
- 9 M. P. Heyward and C. F. Wells, *Transition Met. Chem.*, *12* (1987) 179.
- 20 C. F. Wells and G. Davies, *lYans. Faraday Sot., 63 (1967) 2737; C.* F. Wells, C. Barnes and G. Davies, *Trans. Farday Sot., 64* (1968) *3069.*
- 21 R. Varadarajan and C. F. Wells, *J. Chem. Sot., Faraday Trans. I, 69 (1973) 521.*
- 22 *C.* F. Wells, *Trans. Faraday Sot., 62 (1966) 2815.*
- 23 L. A. Mount and C. F. Wells, unpublished results.
- 24 J. K. Brown, D. Fox, M. P. Heyward and C. F. Wells, *J. Chem. Sot. Dalton Trans.. (1979) 735.*
- 25 D. Fox and C. F. Wells, i. *'Chem. Sot. Dalton Trans., (1989) 151.*