Kinetics of the Oxidation of Quinol by Bis(2,2'-bipyridine)manganese(III) Ions in Aqueous Perchlorate Media

MALCOLM P. HEYWARD and CECIL F. WELLS*

Department of Chemistry, University of Birmingham, Edgbaston, P.O. Box 363, Birmingham B15 2TT (U.K.) (Received February 28, 1989; revised July 18, 1989)

Abstract

The kinetics of the oxidation of quinol by Mn-(bipy)₂³⁺_{aq} ions have been investigated at 25 °C in aqueous perchlorate media using a high excess of H₂Q. The observed kinetic order in [Mn(bipy)₂³⁺] is unity and the linear plots of the reciprocal of the pseudo first order rate constant against $[H_2Q]^{-1}$ show that intermediate complexes are involved. From the manner in which the slopes of these latter plots vary with acidity, it is suggested that these reactive intermediate complexes are Mn(bipy)₂HQ²⁺_{aq} and Mn(bipy)₂(OH)HQ⁺_{aq}. The mechanism of this reaction is compared with those suggested for the oxidation of quinol by aqua cations and by cations without a water molecule present in the inner sphere.

Introduction

Following our kinetic investigations of the oxidation of hydrogen peroxide [1], hydrazoic acid [2] and bromide ions [3] by bis(2,2'-bipyridine)manganese(III) ions in aqueous perchlorate media, we now report a kinetic investigation of the oxidation of quinol by this complex. Detailed kinetic studies have been made of the oxidation of quinol by aqua cations, such as Fe^{III}_{aq} [4], Mn^{III}_{aq} [5], Ce^{IV}_{aq} [6], V^{V}_{aq} [7], Co^{III}_{aq} [8], Tl^{III}_{aq} [9], Np^{VI}_{aq} [10] and Pu^{VI}_{aq} and Pu^{IV}_{aq} [11], by cations complexed with other ligands, such as $Fe(phen)_3^{3+}$ [12], $[Ni^{III}$ cyclam]³⁺ [13], $[Ni^{III}bis(1,4,7-triazacyclonane)]$ [14] and $[Ni^{III}tetraazamacrocycles]$ [15], and by anionic oxidants, such as $IrBr_6^{2-}$, $IrCl_6^{2-}$ and $[IrCl_5H_2O]^-$ [16], $Mo(CN)_8^{3-}$ and $Fe(CN)_6^{3-}$ [17] and 12-tungstocobaltate(III) [18]. In addition, the kinetics of the oxidation of quinol by an electrically neutral transition metal complex, $[IrCl_4(H_2O)_2$, have been investigated [16].

Experimental

Solutions of bis(2,2'-bipyridine)manganese(III) ions were prepared by the anodic oxidation of tris-(2,2'-bipyridine)manganese(II) ions, as described previously [19]. Laboratory grade quinol was purified by sublimation under vacuum; all other materials were as described earlier [1-3].

Rates of decay of bis(2,2'-bipyridine)manganese-(III) ions in the presence of quinol were followed at 490 nm using a Durrum-Gibson stopped flow spectrophotometer and reaction traces were photographed from the storage screen of a Telequipment DM 64 oscilloscope. Absorbances were measured using a Unicam SP 500 Series 2 spectrophotometer.

Results and Discussion

Stoichiometry

As quinol reacts with Fe^{III} ions [4], concentrations of Mn(bipy)2³⁺ were determined spectrophotometrically [19] at a wavelength where light absorbance from benzoquinone is not involved [4]. The reaction was investigated using an excess of $Mn(bipy)_2^{3+}$ over quinol H_2Q , estimating the concentration of the Mn^{III} complex before and after the oxidation using direct spectrophotometry at 490 nm with the extinction coefficient for the complex $\epsilon =$ 2.10×10^2 dm³ mol⁻¹ cm⁻¹ [19]. Ionic strength was adjusted to 1.00 mol dm⁻³ by adding sodium perchlorate. Table 1 shows that the value for the consumption ratio $|\Delta[Mn^{III}]|/|\Delta[H_2Q]|$ is invariant with the concentration of perchloric acid, the mean value of this ratio in the range 0.4-1.00 mol dm⁻³ $HClO_4$ being 2.01 ± 0.04. We conclude that the stoichiometry is represented by eqn. (1) in agreement $2Mn^{III} + H_2Q \longrightarrow 2Mn^{II} + 2H^+ + benzoquinone$ (1)

with the reactions of quinol with other oxidizing cations [5-18].

© Elsevier Sequoia/Printed in Switzerland

0020-1693/89/\$3.50

^{*}Author to whom correspondence should be addressed.

[H ⁺] (mol dm ⁻³)	Initial [Mn ^{III}] (10 ⁻⁴ mol dm ⁻³)	Initial $[H_2Q]$ (10 ⁻⁴ mol dm ⁻³)	$ \Delta[Mn^{III}] $ $ \Delta[H_2Q] $
0.40	8.3	2.50	2.07
0.40	8.3	4.00	1.98
0.60	10.1	2.50	2.08
0.60	10.1	5.00	1.97
0.80	8.9	2.50	2.00
0.80	8.9	4.00	1.98
1.00	8.9	2.50	2.02
1.00	8.9	4.00	1.98

TABLE 1. Consumption ratio for the oxidation of quinol by $Mn(bipy)_2^{3+}aq$ at 20 °C and an ionic strength = 1.00 mol dm⁻³ with varying acidities and a constant total [bipy] = 1.13×10^{-3} mol dm⁻³

Kinetics at 25.4 °C

Owing to the absorbance of light by benzoquinone at 400 nm, the wavelength used [1-3] in the investigations of the oxidations of other substrates by Mn(bipy)₂³⁺, stopped-flow traces were measured at 490 nm. As the extinction coefficient for Mn(bipy)₂³⁺ at 490 nm $\epsilon_{490} < \epsilon_{400}$, initial concentrations of Mn(bipy)₂³⁺ were higher than those used in the investigations of the kinetics with other substrates. An initial [Mn(bipy)₂³⁺] ~ 6×10^{-4} mol dm⁻³ was used and this resulted in the use of a more limited range of [HClO₄] than before.

The decay of $Mn(bipy)_2^{3+}$ at $[HCIO_4] = 0.40 \text{ mol} dm^{-3}$ with an ionic strength = 1.00 mol dm⁻³ adjusted by the addition of sodium perchlorate was first order for $[H_2Q] = 0.01 - 0.10 \text{ mol} dm^{-3}$. A plot of the pseudo first order rate constant k_0 against $[H_2Q]$ is a curve, but a plot of k_0^{-1} against $[H_2Q]^{-1}$ is linear with an intercept on the k_0^{-1} axis (Fig. 1).

Fig. 1. Plots of k_0^{-1} against $[H_2Q]^{-1}$ for the oxidation of quinol by $Mn(bipy)_2^{3+}aq$ at an ionic strength = 1.00 mol dm⁻³ and at 25.4 °C with [HClO₄] (mol dm⁻³) varying as follows: \times , 0.40; \circ , 0.60; \triangle , 0.80; \bullet , 1.00.

The values for k_0 are collected in Table 2 and these show that k_0 is unchanged when the sodium perchlorate used to adjust the ionic strength to 1.00 mol dm⁻³ is replaced by lithium perchlorate.

Similar linear plots for $\log[Mn(bipy)_2^{3^+}]$ against time were obtained at $[HClO_4] = 0.60, 0.80$ and 1.00 mol dm⁻³ and plots of k_0^{-1} against $[H_2Q]^{-1}$ were linear for constant acidity (Fig. 1). All the values for k_0 are given in Table 2. This Table shows that increasing the added concentration of 2,2'-bipyridine at 1.00 mol dm⁻³ HClO₄ has no effect on the rate constant.

Mechanism of the Oxidation

The linearity of the plots of k_0^{-1} against $[H_2Q]^{-1}$ in Fig. 1 shows that intermediate complexes are involved in the oxidation. It is assumed that these involve only a ratio of Mn^{III}:H₂Q = 1.0 and the various possibilities for the pre-equilibria are given in eqns. (2)-(8).

$$Mn(bipy)_{2}^{3+}_{aq} \xleftarrow{K_{h}} Mn(bipy)_{2}OH^{2+}_{aq} + H^{+}_{aq} \qquad (2)$$

$$Mn(bipy)_{2}^{3+}_{aq} + H_{2}Q_{aq} \xrightarrow{\beta_{1}} Mn(bipy)_{2}H_{2}Q^{3+}_{aq}$$
(3)

$$Mn(bipy)_{2}^{3+}H_{2}Q_{aq} \xleftarrow{K_{1}} Mn(bipy)_{2}HQ^{2+}_{aq} + H^{+}_{aq}$$
(4)

$$Mn(bipy)_2 HQ^{2+}_{aq} \xleftarrow{K_2}$$

$$Mn(bipy)_2(OH)HQ_{aq}^* + H_{aq}^*$$
(5)

$$Mn(bipy)_2OH^{2+}_{aq} + H_2Q_{aq} \stackrel{\beta'}{\longleftarrow} M_1(1, \dots) (OU)U_1O^{2+}_{aq} (OU)U_1O^{2+}_$$

$$Mn(bipy)_2(OH)H_2Q^{2+}_{aq} (6)$$

$$Mn(bipy)_{2}(OH)H_{2}Q_{aq} \xleftarrow{K_{3}} Mn(bipy)_{2}(OH)HQ^{*}_{aq} + H^{*}_{aq}$$
(7)

$$Mn(bipy)_2OH^{2+}_{aq} + H_2Q_{aq} \stackrel{\beta''_1}{\longrightarrow} Mn(bipy)_2HQ^{2+}_{aq} (8)$$

TABLE 2. Pseudo first order rate constants k_0 for the oxidation of quinol by $Mn(bipy)_2^{3+}a_q$ with varying [HCIO4] at 25.4 °C and an ionic strength = 1.00 mol dm⁻³ adjusted with additions of NaClO₄ and at a constant total [bipy] = 1.13 × 10⁻³ mol dm⁻³ for an initial [Mn^{III}] ~ 6 × 10⁻⁴ mol dm⁻³

[H ⁺] (mol dm ⁻³)	$[H_2Q]$ (10 ⁻² mol dm ⁻³)	$k_{0} (s^{-1})$
0.40	1.00	8.6
0.40	1.02	7.7ª
0.40	2.00	12.4
0.40	2.04	11.6 ^a
0.40	3.00	17.5
0.40	3.06	15.7 a
0.40	4.00	22.2
0.40	4.90	20.8
0.40	7.4	25.6
0.40	9.8	27.8
0.40	9.91	28.0 ^a
0.60	0.95	5.5
0.60	1.49	6.7
0.60	1.99	10.3
0.60	2.46	10.1
0.60	2.99	12.2
0.60	3.98	13.3
0.60	4.93	15.2
0.60	7.4	20.0
0.60	9.8	24.4
0.80	0.95	4.9
0.80	1.49	7.6
0.80	1.99	8.9
0.80	2.46	10.9
0.80	3.00	10.8
0.80	4.00	12.4
0.80	4.93	14.5
0.80	7.4	18.1
1.00	0.95	4.1
1.00	1.00	3.9
1.00	1.00	4.2 ^b
1.00	1.49	6.5
1.00	2.00	7.8
1.00	2.00	7.3 ^b
1.00	3.00	9.8
1.00	4.00	13.0
1.00	4.90	13.0 ^b
1.00	7.4	14.5
1.00	9.8	19.6

^a Ionic strength adjusted to $1.00 \text{ mol } \text{dm}^{-3}$ with the addition of LiClO₄. ^b Total added [bipy] = $5.13 \times 10^{-3} \text{ mol } \text{dm}^{-3}$.

Some of these combinations of pre-equilibria are mutually indistinguishable: (3) + (4) and (2) + (8); (3) + (4) + (5), (2) + (6) + (7) and (2) + (8) + (5). Possible rate determining redox steps are (9)-(12)

$$Mn(bipy)_{2}H_{2}Q^{3+}_{aq} \xrightarrow{k_{1}} Mn^{II}_{aq} + HQ \cdot_{aq} + H^{+}_{aq} + 2bipy_{aq} \qquad (9)$$

$$Mn(bipy)_2 HQ^{2+}_{aq} \xrightarrow{k_2} Mn^{II}_{aq} + HQ \cdot_{aq} + 2bipy_{aq}$$
(10)

$$Mn(bipy)_{2}(OH)H_{2}Q^{2*}_{aq} \xrightarrow{k_{3}} Mn^{II}_{aq} + HQ \cdot_{aq} + 2bipy_{aq}$$
(11)

$$Mn(bipy)_{2}(OH)HQ^{+}_{aq} \xrightarrow{k_{4}} Mn^{II}_{aq} + HQ \cdot_{aq} + 2bipy_{aq}$$
(12)

which, in turn, will be followed by the rapid conversion of the semiquinone HQ \cdot to benzoquinone via (13) [4-18]

$$Mn^{III} + HQ \cdot \xrightarrow{fast} Mn^{II} + benzoquinone + H^{+}$$
 (13)

As $K_h h^{-1} \gg 1$ ($h = [H^+]$) [19], the rate of decay of all species of Mn(bipy)₂³⁺ will be given by (14)

$$- (d[Mn^{III}]_{total}/dt) = \{2(k_1\beta_1 + k_2\beta_1K_1h^{-1} + k_4\beta_1K_1K_2h^{-2})[Mn^{III}]_{total}[H_2Q]\}/$$
$$\{K_hh^{-1} + \beta_1(1 + K_1h^{-1} + K_1K_2h^{-2})[H_2Q]\} \quad (14)$$

bearing in mind the indistinguishable sets of preequilibria and that (11) is also indistinguishable kinetically from (10). The pseudo first order rate constant k_0 is then given by (15) and the slopes S

$$\frac{1}{k_{o}} = \frac{K_{h}h}{2\beta_{1}(k_{1}h^{2} + k_{2}K_{1}h + k_{4}K_{1}K_{2})[H_{2}Q]} + \frac{h^{2} + K_{1}h + K_{1}K_{2}}{2(k_{1}h^{2} + k_{2}K_{1}h + k_{4}K_{1}K_{2})}$$
(15)

of the linear plots of k_0^{-1} versus $[H_2Q]^{-1}$ will be given by (16)

$$S^{-1} = \frac{2\beta_1(k_1h + k_2K_1 + k_4K_1K_2h^{-1})}{K_h}$$
(16)

Values for the slopes of the lines in Fig. 1 are collected in Table 3 and Fig. 2 shows that S^{-1} against h^{-1} gives a linear plot with an intercept on the S^{-1} axis. For (16) to apply to this plot, $k_1h \ll (k_2K_1 + k_4K_1K_2h^{-1})$. This will give values of $k_2\beta_1K_1K_h^{-1} = 75 \pm 40 \text{ s}^{-1}$ and $k_4\beta_1K_1K_2K_h^{-1} = 170 \pm 30 \text{ dm}^3 \text{ mol}^{-1} \text{ s}^{-1}$ at 25.4 °C.

TABLE 3. Values of the slopes S with standard errors determined by the least-squares procedure of the plots of k_0^{-1} vs. $[H_2Q]^{-1}$ for the oxidation of quinol by $Mn(bipy)_2^{3+}aq$ at 25.4 °C with ionic strength = 1.00 mol dm⁻³

[H ⁺] (mol dm ⁻³)	$\frac{S}{(10^{-3} \mathrm{dm}^{-3} \mathrm{mol}\mathrm{s})}$
0.40	1.00 ± 0.06
0.60	1.48 ± 0.07
0.80	1.61 ± 0.10
1.00	2.11 ± 0.08

Fig. 2. Plot of the variation of the reciprocal of the slope (S) of the plots of k_0^{-1} against $[H_2Q]^{-1}$ with the reciprocal of the hydrogen ion concentration (h) for an ionic strength = 1.00 mol dm⁻³ and 25.4 °C.

Comparison with Other Oxidants

The linearity of the plots of k_0^{-1} versus $[H_2Q]^{-1}$ shows that at least one intermediate complex is involved in the oxidation by $Mn(bipy)_2^{3+}aq$ and k_o is decreased by increasing acidity. This can be compared with the results for a series of aqua cations. No intermediate complexes were detected for Fe^{III} ag [4], Np^{VI}_{aq} [10], Pu^{VI}_{aq} [11], Pu^{IV}_{aq} [11], [IrCl₅H₂O]⁻ [16] and [IrCl₄(H₂O)₂ [16]; oscilloscope traces suggest that they may be involved with Mn^{III}_{aq} [5] and Co^{III}_{aq} [8] and the kinetics show that they are involved for V^{V}_{aq} [7], Ce^{IV}_{aq} [6] and Tl^{III}_{aq} [9]. Where the effect of changes in the hydrogen ion concentration h on the rate constant has been investigated, a wide spectrum of effects is observed. The rate constant increases with decreasing *h* for Fe^{III}_{aq} [4], Mn^{III}_{aq} [5], Tl^{III}_{aq} [9] and Pu^{VI}_{aq} [11], increases with increasing *h* for V^{V}_{aq} [7], is independent of *h* for Ce^{IV}_{aq} [6], Np^{VI}_{aq} [10] and Pu^{IV}_{aq} [11] and varies differently with *h* for Co^{III}_{aq} according to the conditions [8]. For ions possessing at least one water molecule in the first coordination sphere reacting with acidic substrates, ambiguities of interpretation of variations of rate with h exist: the h variation can be ascribed either to the hydrolysis of the metal ion or to the acid dissociation of the substrate, or to a combination of both. However, as the acid dissociation constant for $H_2Q \rightleftharpoons HQ^- + H^+$ is low $(K_a = 1.22 \times 10^{-10} \text{ at } 28.2 \text{ °C})$ [4], the participation of the species HQ⁻ in high acidities has been questioned. Indeed, for the small retardations with increasing h observed with [Ni^{III}(cyclam)] [13], [Nitetraazamacrocycles] [15] and [Ni^{III}bis(1,4,7triazacyclononane] [14] as oxidants, the participation of the protonation equilibrium (17) is proposed.

$$H_{aq}^{+} + H_2 Q_{aq} \xleftarrow{K_c} H_3 Q_{aq}^{+}$$
(17)

Thus, with aqua cations as oxidants, a combination of equilibrium (17) for the substrate and the hydrolytic equilibrium of the cation would be invoked, similar to the situation found in the oxidation of alcohols by Mn^{III}_{aq} [20] and Co^{III}_{aq} [21]. However, against this proposed participation of equilibrium (17) in the oxidation of quinol is the unexpected absence of any variation of rate with h found with the oxidants $Fe(phen)_3^{3+}$ [12], 12-tungstocobaltate(III) [18] and $IrCl_6^{2-}$ [16] and the low value of $K_c \leq 0.01 \text{ dm}^3 \text{ mol}^{-1}$ for quinol deduced [22] by comparison with the equilibrium measurements made on other organic hydroxy compounds: this experimental estimate for $K_e \lesssim 0.01 \text{ dm}^3 \text{ mol}^{-1}$ has recently been confirmed [23] and contrasts with $K_c = 0.22 - 0.24 \text{ dm}^3 \text{ mol}^{-1}$ calculated [13, 14] from the kinetic variations. However, as found in the present oxidation and in those involving similar acidic substrates, the presence of H₂Q in either an inner or outer sphere complex can increase K_a by stabilizing HQ⁻ in proximity to the cation, so that this anion can participate in the mechanism. Intermediate complexes were also detected in the oxidations of Br⁻ [3], H₂O₂ [1] and HN_3 [2] by $Mn(bipy)_2^{3+}aq$, and in the last two cases [1, 2] the acid dissociation of the substrate ligand is facilitated by its juxtaposition with the Mn^{3+} ion. Moreover, in the oxidation of HN₃ by Ni(bipy)₃³⁺ where the intermediate involvement of N₃ is shown by the kinetic dependence on h, K_a for HN₃ must be increased by its presence in an outer sphere complex with Ni(bipy)₃³⁺ [24]; the involvement of outer sphere complexes with Ni(bipy)₃³⁺ was established kinetically for the oxidation of chloride ions by $Ni(bipy)_3^{3+}$ [25]. Therefore, in the oxidations of H_2Q by cations M^{n+} , discussed above, an increase, a decrease or an independence of rate constant with hcould result from the formation of intermediate complexes, inner or outer sphere, in which K_a for H_2Q in the complex is increased, with the individual dependency on h arising from the particular balance between the kinetic and thermodynamic stabilities of $M^{n+}H_2Q$ and $M^{n+}HQ^-$ with that cation M^{n+} .

References

- 1 M. P. Heyward and C. F. Wells, J. Chem. Soc., Faraday Trans. I, 84 (1988) 815.
- 2 M. P. Heyward and C. F. Wells, J. Chem. Soc., Dalton Trans., (1988) 1331.
- 3 M. P. Heyward and C. F. Wells, Inorg. Chim. Acta, 148 (1988) 241.
- 4 J. H. Baxendale, H. R. Hardy and L. H. Sutcliffe, Trans. Faraday Soc., 47 (1951) 963.
- 5 G. Davies and K. Kustin, *Trans. Faraday Soc.*, 65 (1969) 1630; C. F. Wells and L. V. Kuritsyn, J. Chem. Soc. A, (1970) 676.

- 6 C. F. Wells and L. V. Kuritsyn, J. Chem. Soc. A, (1969) 2575.
- C. F. Wells and L. V. Kuritsyn, J. Chem. Soc. A, (1970) 1372; E. Pelizzetti, E. Mentasti, E. Pramauro and G. Saini, J. Chem. Soc., Dalton Trans., (1974) 1940.
 C. F. Wells and L. V. Kuritsyn, J. Chem. Soc. A, (1969)
- 8 C. F. Wells and L. V. Kuritsyn, J. Chem. Soc. A, (1969) 2930; G. Davies and K. O. Watkins, J. Phys. Chem., 74 (1970) 3388; E. Mentasti, E. Pelizzetti and G. Giraudi, J. Inorg. Nucl. Chem., 38 (1976) 795; C. F. Wells, A. F. M. Nazer and D. Mays, J. Inorg. Nucl. Chem., 39 (1977) 2001.
- 9 E. Pelizzetti, E. Mentasti, M. E. Carlotti and G. Giraudi, J. Chem. Soc., Dalton Trans., (1975) 794.
- 10 K. Reinshmiedt, J. C. Sullivan and M. Woods, *Inorg. Chem.*, 12 (1973) 1639.
- 11 T. W. Newton, J. Inorg. Nucl. Chem., 36 (1974) 639.
- 12 E. Mentasti and E. Pelizzetti, Int. J. Chem. Kin., 9 (1972) 215.
- 13 J. C. Brodovitch, A. McAuley and T. Oswald, *Inorg. Chem.*, 21 (1982) 3442.
- 14 A. McAuley, L. Spencer and P. R. West, Can. J. Chem., 63 (1985) 1198.

- 15 A. McAuley, T. Oswald and R. I. Haines, Can. J. Chem., 61 (1983) 1120.
- 16 E. Pelizzetti, E. Mentsati and C. Baiocchi, J. Phys. Chem., 80 (1976) 2979; E. Pelizzetti, E. Mentasti and E. Pramauro, J. Chem. Soc., Perkin Trans. II, (1978) 620.
- 17 E. Pelizzetti, E. Mentasti and E. Pramauro, Inorg. Chem., 17 (1978) 1688.
- 18 Z. Amjad, J. C. Brodovitch and A. McAuley, Can. J. Chem., 55 (1977) 3581.
- 19 M. P. Heyward and C. F. Wells, *Transition Met. Chem.*, 12 (1987) 179.
- 20 C. F. Wells and G. Davies, *Trans. Faraday Soc.*, 63 (1967) 2737; C. F. Wells, C. Barnes and G. Davies, *Trans. Farday Soc.*, 64 (1968) 3069.
- 21 R. Varadarajan and C. F. Wells, J. Chem. Soc., Faraday Trans. I, 69 (1973) 521.
- 22 C.F. Wells, Trans. Faraday Soc., 62 (1966) 2815.
- 23 L. A. Mount and C. F. Wells, unpublished results.
- 24 J. K. Brown, D. Fox, M. P. Heyward and C. F. Wells, J. Chem. Soc. Dalton Trans., (1979) 735.
- 25 D. Fox and C. F. Wells, J. Chem. Soc. Dalton Trans., (1989) 151.