
Inorganica Chimica Acta, 157 (1989) 51-60 

Synthesis and Characterization of Two Copper(I1) Complexes with Protonated 
6-Benzylaminopurine as Ligand. Crystal and Molecular Structure of 
[ CuC13( 6-benzylaminopurineH),] C1*H20 

JOAN RIBAS*, MONTSERRAT MONFORT, RAMON COSTA 

Departamento de Quimica Inorgbnica, Facultat de Quimica, Universitat de Barcelona, Diagonal 647, 08028.Barcelona, Spain 

and XAVIER SOLANS 

Departament de Cristallografia, Mineralogia i Dip&its Minerals, Facultat de Geologia, Universitat de Barcelona, 08028-Barcelona. 
Spain 

(Received July 15, 1988) 

Abstract 

Two new mononuclear complexes of Cu(II), 
[CuXs(6-benzylaminopurineH)s]X*HsO (X = Cl, Br) 
have been obtained by direct reaction of CuXz*aq 
and 6-benzylaminopurine in hydrochloric or hydro- 
bromic acid. The chloro complex crystallizes in the 
monoclinic system, a = 13.508(3), b = 21.181(4), 
c = 10.661(2) A, p = 110.644(2)‘, 2 = 4. The crystal 
structure consists of mononuclear units where Cu(II) 
displays a distorted bpt geometry. Cu and three 
chlorine atoms are placed in the equatorial plane 
while the N atoms belonging to the imidazole ring of 
6-benzylaminopurine protonated ligands are in the 
apical sites. The EPR spectrum at room temperature 
presents three g values gl = 2.285, g2 = 2.133 and 
g3 = 2.035. They clearly indicate a distortion of bpt 
to sp geometry according to the molecular structure. 

Introduction 

Purine and pyrimidine derivatives are known to 
be metal-binding bases in many biological processes 
[l]. Among these bases, adenine is of particular 
interest due to its known tendency to act as a mono- 
dentate, bidentate or bridging bidentate ligand with 
copper(I1) cation [2]. This ligand presents the 
interesting feature of acting as a bridge even in strong 
acidic media (concentrated HCI or HBr) [3], 

Under these conditions adenine becomes 
protonated and acts as a bridging ligand together with 
chlorine anions, forming a trinuclear copper(I1) 
complex [ 31. 

Our attempts to extend this behaviour to other 
adenine derivatives (commercial 6-benzylamino- 
purine, 8-azaadenine or others) were unsuccessful. 

*Author to whom correspondence should be addressed. 
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Nevertheless, 6-benzylaminopurine allowed the 
synthesis of two new mononuclear complexes of 
copper(I1) with the protonated N6-benzyladenine 
acting only as a monodentate l&and. The results and 
characterization, including the crystal and molecular 
structure of [CuC13(6-benzylaminopurineH)2]Cl*H20 
and EPR studies, are presented in this paper. 

Experimental 

Synthesis of (CuX3(C12HI,JV5)2]X (X = Cl, Br) 
The molar ratio between CuX2*aq and 6-benzyl- 

aminopurine is not important in the preparation of 
the mononuclear complexes because polynuclear 
ones are never formed. The best crystals were ob- 
tained by mixing 0.7 mmol of CuX2*aq and 0.35 
mmol of 6-benzylaminopurine (Aldrich, used without 
further purification) in 10 ml of 2 M HCl or HBr 
respectively. After heating in a steam bath with 
constant stirring, the clear solution was left to crystal- 
lize at room temperature. The blue crystals were 
filtered and washed with cold concentrated acid. 
Anal. Calc. for CUC~~H~,&N~~~H~O: C, 42.90; N, 
20.85; H, 3.30; Cl, 21.11; Cu, 9.46. Found: C,42.7; 
N, 20.6; H, 3.3; Cl, 21.1; Cu, 9.5%. Calc. for CUC~~- 
H2eBr4N1e: C, 34.66; N, 16.84; H, 2.42; Br, 31.62; 
Cu, 7.64. Found: C, 34.6; N, 16.5; H, 2.4; Br, 31.3; 
Cu, 7.6%. 

Crystal Structure Determination of the Chloro 
Complex 

A tabular crystal (0.1 X0.1 X0.07 mm) was 
selected and mounted on a Philips PW-1100 four 
circle diffractometer. The unit-cell parameters were 
determined from 25 reflections (4 < 0 < 12) and 
refined by the least-squares method. Intensities were 
collected with graphite monochromatized MO Kar 
radiation, using the o-scan technique, with scan 
width 0.8” and scan speed 0.03” s-r. 2045 reflections 
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TABLE 1. Crystal Data of [CuC13(6-benzylaminopurineH)z]- 
Cl*H20 

Formula [CUC~~(C~~H,ONS)~IC~.H~O 
Formula weight 671.9 

Crystal system monoclinic 

Space group m1a 
a (A) 13.508(3) 

b (A) 21.181(4) 

c (A) 10.661(2) 

P(“) 110.64(2) 

v (A3) 2854(l) 

D, (g cme3) 1.563 

Z 4 

F(OO0) 1362 

h(Mo Ka) (A) 0.7 1069 

W(MO Ka) (cm-‘) 12.05 
Temperature (K) 288 

were measured in the range 2 < 0 < 25, 1920 of 
which were assumed as observed applying the condi- 
tion I> 2.50(I). Three reflections were monitorized 
every two hours as orientation and intensity control. 
Significant intensity decay was not observed. 
Lorentz-polarization, but no absorption corrections, 
were made. The structure was solved by direct 
methods using the MULTAN system of computer 
programs [4] and refined by full-matrix least-squares 
using the SHELX76 program [5]. The function mini- 
mized was w]]F,] - ]FJ]2, where w = (ajFJ2 + 
O.O016)F,] 2)-1. Af’J”, were taken from International 
Tables of Crystallography [6]. A disordered water 
molecule was observed from a difference synthesis, 
an occupancy factor of 0.5 was assigned to each 
position according to the height of peaks. The posi- 
tion of H atoms was calculated and refined with an 
overall isotropic temperature factor and the remain- 
ing atoms were refined anisotropically. The final R 
value was 0.052 (R, = 0.056) for all observed reflec- 
tions. Maximum peak in final difference synthesis was 
0.4 e Ap3; maximum shift/e.s.d. was 0.3 in Ur3 of 
0(W2) atom. Crystallographic data, main distances 
and angles are given in Tables 1,2 and 3 respectively. 

Discussion 

The crystal structure of the chloro complex 
(Fig. 1) consists of mononuclear units of [C~Cl3(6- 
benzylaminopurineH),]+ (Fig. 2) with one chloride 
anion Cl(l) and one disordered water molecule per 
formula unit. The Cu(II) ion displays a distorted 
trigonal bipyramid geometry with the Cu and three 
chlorine atoms in the basal plane (largest deviation 
from the main plane is 0.022(3) ,& in the Cu atom), 
while the two N atoms of organic ligands are in the 
apical sites. Two Cu-Cl bond lengths, Cu-Cl(3) and 
Cu-Cl(4), are equal (average length 2.286(3) A 

TABLE 2. Bond 

purineH)2]Cl*HzO 

C1(2)-cu 
C](3)-cu 
C](4)-cu 

N(l)-Cu 
N(21)-CU 

C(2)-N(1) 
C(9)-N(1) 
N(3)-C(2) 
C(4)-N(3) 
C(5)-C(4) 
C(9)-C(4) 
N(6)-C(5) 
N(lO)-C(5) 

C(7)-N(6) 
N(8)-C(7) 
C(9)-N(8) 
C(ll)-N(10) 
C(12)-C(l1) 
C(13)-C(12) 
C(17)-C(12) 
C(14)-C(13) 
C(15)-C(14) 
C(16)-C(15) 
C(17)-C(16) 
C(22)-N(21) 
C(29)-N(21) 
N(23)-C(22) 

C(24)-N(23) 
C(25)-C(24) 
C(29)-C(24) 
N(26)-C(25) 
C(29)-N(28) 
C(31)-N(30) 
C(32)-C(31) 
C(33)-C(32) 
C(37)-C(32) 
C(34)-C(33) 
C(35)-C(34) 
C(36)-C(35) 
C(37)-C(36) 

Lengths for [CuC13(6-benzylamino- 

2.520(3) 
2.289(4) 
2.283(4) 
2.03 l(7) 
1.995(7) 
1.368(13) 
1.363(13) 
1.356(11) 
1.382(15) 
1.396(15) 
1.361(12) 

1.343(16) 
1.324(13) 
1.343(13) 
1.317(15) 
1.358(15) 
1.483(13) 
1.503(16) 
1.369(16) 
1.362(14) 
1.361(19) 
1.340(19) 
1.358(23) 
1.416(19) 
1.297(13) 
1.298(16) 
1.349(11) 
1.366(15) 
1.436(16) 
1.396(13) 
1.352(18) 
1.370(16) 
1.412(15) 
1.509(15) 
1.363(19) 
1.400(14) 
1.373(22) 
1.311(27) 
1.363(33) 
1.362(22) 

(Fig. 3)) while the third Cu-Cl distance (Cu-Cl(2)) 
is greater than the preceding values, 2.520(3) A. The 
Cl-Cu-Cl bond angles vary from 100.9(l)’ to 
149.4(1)‘(Fig. 3). These two facts (significant differ- 
ences in angles and distances) clearly indicate the 
distortion of the geometry with regard to the bpt 
structure. Effectively, taking into consideration the 
work of Gatteschi et al. [7] on the relation between 
angles and the distortion of bpt to square pyramidal 
geometry, we realize that we are in an intermediate 
case between bpt ((Y = 120) and sp (a = 90). The EPR 
spectra corroborate this theory (see below). 

The two N6-benzyladenine ligands are linked by 
the imidazole atoms N(1) and N(21). This fact agrees 
with the current behaviour on the naturally occurring 
purine bases: coordination is frequently made by 
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TABLE 3. Bond Angles for [CuCls(6-benzylaminopurineH)2]Cl*H20 

C1(3)-Cu-Cl(2) 
C1(4)-Cu-Cl(2) 
c1(4)-cu-c1(3) 
N(l)-Cu-Cl(2) 
N(l)-Cu-Cl(3) 
N(l)-Cu-Cl(4) 
N(21)-Cu-Cl(2) 
N(21)-Cu-Cl(3) 
N(21)-Cu-Cl(4) 
N(21)-Cu-N(1) 
C(2)-N(l)-Cu 
C(9)-N(l)-Cu 
C(9)-N(l)-C(2) 
N(3)-C(2)-N(1) 
C(4)-N(3)-C(2) 
C(5)-C(4)-N(3) 
C(9)-C(4)-N(3) 
C(9)-C(4)-C(5) 
N(6)-C(S)-C(4) 
N(lO)-C(S)-C(4) 
N(lO)-C(S)-N(6) 
C(7)-N(6)-C(5) 
N(8)-C(7)-N(6) 
C(9)-N(8)-C(7) 
C(4)-C(9)-N(1) 
N(8)-C(9)-N(1) 
N(8)-C(9)-C(4) 
C(1 l)-N(lO)-C(5) 
C(12)-C(ll)-N(10) 

100.9(l) 
109.6(l) 
149.4(l) 
92.5(2) 
89.8(3) 
90.8(3) 
94.0(2) 
90.0(3) 
86.0(3) 

173.4(3) 
123.2(6) 
131.3(7) 
105.3(7) 
110.4(9) 
107.1(8) 
133.9(9) 
106.7(9) 
119.3(11) 
117.6(9) 
122.7(11) 
119.6(10) 
118.7(10) 
127.4(12) 
113.7(8) 
110.5(10) 
126.1(8) 
123.2(9) 
124.7(10) 
109.9(10) 

C(13)-C(12)-C(l1) 
C(17)-C(12)-C(l1) 
C(17)-C(12)-C(13) 
C(14)-C(13)-C(12) 
C(U)-C(14)-C(13) 
C(16)-C(lS)-C(14) 
C(17)-C(16)-C(15) 
C(16)-C(17)-C(12) 
C(22)-N(21)-Cu 
C(29)-N(21)-Cu 
C(29)-N(21)-C(22) 
N(23)-C(22)-N(21) 
C(24)-N(23)-C(22) 
C(25)-C(24)-N(23) 
C(29)-C(24)-N(23) 
C(29)-C(24)-C(25) 
N(26)-C(25)-C(24) 
C(24)-C(29)-N(21) 
N(28)-C(29)-N(21) 
N(28)-C(29)-C(24) 

C(32)-C(31)-N(30) 
C(33)-C(32)-C(31) 
C(37)-C(32)-C(31) 
C(37)-C(32)-C(33) 
C(34)-C(33)-C(32) 
C(35)-C(34)-C(33) 
C(36)-C(35)-C(34) 
C(37)-C(36)-C(35) 
C(36)-C(37)-C(32) 

121.8(9) 
119.8(10) 
118.4(11) 
122.0(10) 
119.8(14) 
121.0(15) 
119.1(11) 
119.7(12) 
127.2(6) 
129.1(7) 
103.4(7) 
114.7(10) 
105.2(3) 
134.2(9) 
103.0(9) 
122.8(11) 
115.8(9) 
113.6(10) 
131.0(9) 
115.4(11) 
110.9(10) 
119.4(9) 
121.4(11) 
119.2(11) 
119.2(13) 
122.0(20) 
120.0(18) 
120.8(16) 
118.7(14) 

Fig. 1. Crystal structure of [CuCls(6-benzylaminopurineH)z]- 
Cl*H20. 

using imidazole N atoms [8]. The main differences 
between the two organic ligands occur in the C(5)- 
C(lO)-C(l l)-C(12) and C(25)-C(30)-C(31)-C(32) 
torsion angles which alter from 109.5(10) in the 
C(lO)-C(ll) bond to 126.2(9) in the C(30)-C(31) 
bond. This difference is assumed to be due to esteric 
effects in the crystal packing. 

c35 

c34 

Fig. 2. Molecular structure of the [CuCls(6-benzylamino- 
purineH)z]+ cation. 
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Fig. 3. Lengths and angles of the equatorial plane of the 
[CuCla(6-benzylaminopurineH)a]+ cation. 

The non-coordinated chlorine Cl(l) atom is 
hydrogen bonded to N(23) [N(23). . .Cl(l)i = 
3.102(6) A; H(23)...Cl(l)i= 2.15(6) A] and N(3) 
atoms [N(3)...Cl(l)ii = 3.134(6) A; H(3)...Cl(l)ii = 
;.19(6) A]; symmetry code i =x, y, z; ii = 1 +x, 
- - y, z). The distance between Cu(I1) and $1) is 
5.348 A, indicating no interaction between them. 
Finally, the disordered water molecule is hydrogen 
bonded to a cation [O(Wl)....N(26)iii = 3.17(l) A; 
O(Wl)...N(8)i = 2.90(l) A; 0(W2). . .C1(2)iv = 
3.109(8) A and O(W2)...p(28)v = 2.69(l) A; sym- 
metry code iii =x - $, --y-z; iv=1 -x,-y, 
-z and v = f +x, i - y?l + z. Distances between 
these water molecules and the Cu(II) ion are very 
long (4.292 and 4.155 A) indicating no interaction. 

The EPR powder spectra show three g values: g, = 
2.285, g2 ~2.133 and g3 = 2.035. This pattern 
corresponds to a considerable distortion from the bpt 
geometry to sp [7,9]. Nevertheless, Extended Huckel 
calculations [lo] over the structure gives the un- 
paired electronic distribution principally along the 
axial direction (bpt geometry). According to 
Gatteschi et al. [7], we should expect a higher g, 
value similar to g, and a lower g3 value. This disagree- 
ment indicates that the EPR spectrum with the 
powder sample can reflect crystal rather than molecu- 
lar data. Unfortunately, our attempts to obtain 
frozen solutions useful for EPR yield product decom- 
position. 

The bromo derivative shows an EPR powder 
pattern corresponding to an sp geometry, with gll = 
2.21 and gl = 2.02. It was not possible to obtain 
suitable crystals for X-ray structural determination to 
confirm its geometry. 

J. Ribas et al. 

Supplementary Material 

Observed and calculated structure factors (8 
pages); anisotropic thermal parameters; final atomic 
coordinates and final hydrogen coordinates are 
available from the authors on request. 
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