1,4-Diaza-1,3-butadiene Seven-coordinate Complexes of Molybdenum(II) and Tungsten(II)

PAUL K. BAKER*, JANE BARFIELD and MARIT VAN KAMPEN Department of Chemistry, University College of North Wales, Bangor, Gwynedd, LL57 2UW, U.K. (Received February 19, 1988)

Abstract

The seven-coordinate complexes $[MI_2(CO)_3$ -(NCMe)₂] (M = Mo or W) react with an equimolar quantity of RN:CHCH:NR (R = Buⁱ, Cy, Ph or *p*-MeOPh) in CH₂Cl₂ at room temperature to afford good yields of the new 1,4-diaza-1,3-butadiene complexes $[MI_2(CO)_3(RN:CHCH:NR)]$ (1–8) by the successive substitution of two acetonitrile ligands. The new complexes 1–8 were characterised by elemental analysis (C, H and N), infrared and ¹H NMR spectroscopy.

Introduction

1,4-Diaza-1,3-but adienes which contain the α diimine moiety, -N=C-C=N- have often been used as ligands in organometallic chemistry [1-8]. It has been observed [9] that they have similar donor properties to the extensively studied 2,2'bipyridyl and 1,10-phenanthroline bidentate nitrogen donor ligands. Several seven-coordinate complexes of molybdenum(II) or tungsten(II) have been reported containing 1,4-diaza-1,3-butadienes as attached ligands. For example, in 1985 Bell and Walton [10] reported the reactions of $[M(CO)_4(RN:CHCH:NR)]$ $(M = Mo \text{ or } W; R = Pr^{i}, Bu^{t} \text{ or } Cy)$ with SnCl₄ in CH₂Cl₂ afford the seven-coordinate complexes [MCl-(SnCl₃)(CO)₃(RN:CHCH:NR)] in good yield. They also found that the molybdenum complexes [MoCl- $(SnCl_3)(CO)_3(RN:CHCH:NR)$] $(R = {}^{i}Pr \text{ or } Cy)$ reacted with an excess of R'NC ($R' = CHMe_2$, CMe_3) or Cy) in the presence of $K[PF_6]$ to give either mono or dicationic complexes of the type [MoCl(CNR')₄-(RN:CHCH:NR) [PF₆] or [Mo(CNR')₅(RN:CHCH: NR][PF_6]₂.

In recent years we have been investigating the chemistry of the highly versatile seven-coordinate complexes $[MI_2(CO)_3(NCMe)_2]$ (M = Mo or W) which are prepared in quantitative yield by reacting the zerovalent compounds $[M(CO)_3(NCMe)_3]$ with one equivalent of I_2 at 0 °C [11]. In this paper we

describe the reactions of these complexes with 1,4-diaza-1,3-butadienes.

Experimental

All reactions described in this paper were carried out using standard Schlenk line techniques. The bisacetonitrile compounds $[MI_2(CO)_3(NCMe)_2]$ (M = Mo or W) were synthesised by the literature method [11]. The 1,4-diaza-1,3-butadienes, RN:CHCH:NR (R = Buⁱ, Cy, Ph or *p*-MeOPh) were also prepared by standard published procedures [12-16]. CH₂Cl₂ was dried and distilled before use.

Elemental analyses (C, H and N) were recorded on a Carlo Erba Elemental Analyser MOD 1106 (using helium as a carrier gas). Infrared spectra were recorded on a Perkin-Elmer 197 infrared spectrophotometer. ¹H NMR spectra were recorded on a Jeol FX 60 NMR spectrometer (all spectra were calibrated against tetramethylsilane).

$MoI_2(CO)_3(Bu^iN:CHCH:NBu^i)(1)$

To $[MoI_2(CO)_3(NCMe)_2]$ (0.41 g, 0.802 mmol) dissolved in CH_2Cl_2 (15 cm³) with continuous stirring under a stream of dry nitrogen was added $Bu^iN:CHCH:NBu^i$ (0.135 g, 0.802 mmol) and the mixture was stirred for 20 min. After filtration, removal of the solvent *in vacuo* gave red crystals of $[MoI_2(CO)_3(Bu^iN:CHCH:NBu^i)]$ (yield = 0.32 g, 66%) which were recrystallised from CH_2Cl_2 .

A similar reaction of $[WI_2(CO)_3(NCMe)_2]$ with BuⁱN:CHCH:NBuⁱ afforded the complex $[WI_2(CO)_3$ -(BuⁱN:CHCH:NBuⁱ)] (2).

$MoI_2(CO)_3(CyN:CHCH:NCy)(3)$

To $[MoI_2(CO)_3(NCMe)_2]$ (0.34 g, 0.66 mmol) dissolved in CH_2Cl_2 (15 cm³) with continuous stirring under a stream of dry nitrogen was added CyN:CHCH:NCy (0.143 g, 0.65 mmol) and the mixture was stirred for 15 min. After filtration, removal of the solvent *in vacuo* gave purple-black crystals of $[MoI_2(CO)_3(CyN:CHCH:NCy)]$ (yield = 0.26 g, 60%) which were recrystallized from CH_2 -Cl₂.

^{*}Author to whom correspondence should be addressed.

Complex	Colour	Yield (%)	Analysis (%) ^a		
			C	Н	N
1 [MoI ₂ (CO) ₃ (Bu ⁱ N:CHCH:NBu ⁱ)]	red	66	26.4(25.9)	4.3(3.4)	4.5(4.7)
2 $[WI_2(CO)_3(Bu^iN:CHCH:NBu^i)]$	brown	81	23.0(22.6)	3.3(2.9)	3.9(4.1)
3 [MoI ₂ (CO) ₃ (CyN:CHCH:NCy)]	purple	60	30.5(31.2)	4.0(3.7)	4.2(4.3)
4 [WI ₂ (CO) ₃ (CyN:CHCH:NCy)]	red	62	27.8(27.5)	3.9(3.5)	3.8(3.8)
5 [MoI ₂ (CO) ₃ (PhN:CHCH:NPh)]	green-brown	47	27.4(28.0)	2.0(1.7)	3.6(3.8)
6 [WI ₂ (CO) ₃ (PhN:CHCH:NPh)]	purple	76	31.5(31.8)	2.6(1.9)	4.2(4.4)
7 [MoI ₂ (CO) ₃ (p-MeOPhN:CHCH:NPhOMe-p)]	green	53	32.1(32.5)	2.6(2.3)	4.1(4.0)
8 $[WI_2(CO)_3(p-MeOPhN:CHCH:NPhOMe-p)]$	red-brown	64	29.0(28.9)	2.5(2.0)	3.5(3.6)

TABLE 1. Physical and Analytical Data^a for the Complexes [MI₂(CO)₃(RN:CHCH:NR)]

^aCalculated values in parentheses.

A similar reaction of $[WI_2(CO)_3(NCMe)_2]$ with CyN:CHCH:NCy afforded the complex $[WI_2(CO)_3-(CyN:CHCH:NCy)]$ (4).

$WI_2(CO)_3(PhN:CHCH:NPh)(6)$

To $[WI_2(CO)_3(NCMe)_2]$ (0.41 g, 0.68 mmol) with continuous stirring under a stream of dry nitrogen was added PhN:CHCH:NPh (0.14 g, 0.68 mmol), and the mixture was stirred for 15 min. After filtration, removal of the solvent *in vacuo* gave purple-red crystals of $[WI_2(CO)_3(PhN:CHCH:$ NPh)] (yield = 0.39 g, 76%) which were recrystallised from CH₂Cl₂.

A similar reaction of $[MoI_2(CO)_3(NCMe)_2]$ with PhN:CHCH:NPh afforded the complex $[MoI_2(CO)_3-(PhN:CHCH:NPh)]$ (5).

$WI_2(CO)_3(p-MeOPhN:CHCH:NPhOMe-p)(8)$

To $[WI_2(CO)_3(NCMe)_2]$ (0.41 g, 0.68 mmol) with continuous stirring under a stream of dry nitrogen was added *p*-MeOPhN:CHCH:NPhOMe-*p* (0.161 g, 0.68 mmol), and the mixture was stirred for 20 min. After filtration, removal of the solvent *in vacuo* gave red-brown crystals of $[WI_2(CO)_3$ -

TABLE 2. Infrared Data^a for the Complexes $[MI_2(CO)_3-(RN:CHCH:NR)]$

Complex	ν(CO) (cm ⁻¹)	ν (C=N) (cm ⁻¹)
1	2060(m), 2000(s), 1939(s)	1622(s)
2	2061(m), 1998(s), 1921(s)	1630(m)
3	2025(m), 1979(s), 1935(s)	1518(m)
4	2018(m), 1976(s), 1922(s)	1582(m)
5	2020(m), 1970(s), 1941(s)	1589(m)
6	2062(m), 2001(s), 1921(s)	1599(s)
7	2038(m), 1978(s), 1941(s)	1600(m)
8 ^b	2010(s), 1952(s), 1918(s)	1659(m)

^aSpectra recorded in CHCl₃; m, medium; s, strong. ^bSpectrum recorded in MeOH.

(p-MeOPhN:CHCH:NPhOMe-p)] (yield 0.34 g, 64%), which were recrystallised from CH_2Cl_2 .

A similar reaction of $[MoI_2(CO)_3(NCMe)_2]$ with *p*-MeOPhN:CHCH:NPhOMe-*p* afforded the complex $[MoI_2(CO)_3(p-MeOPhN:CHCH:NPhOMe-$ *p*)] (7).

Results and Discussion

Equimolar quantities of $[MI_2(CO)_3(NCMe)_2]$ (M = Mo or W) and RN:CHCH:NR (R = Buⁱ, Cy, Ph or p-MeOPh) react in CH₂Cl₂ at room temperature to give the acetonitrile substituted products $[MI_2(CO)_3(RN:CHCH:NR)]$ (1-8) in good yield. The complexes were characterised by elemental analysis (C, H and N) (Table 1), infrared spectroscopy (Table 2) and ¹H NMR spectroscopy (Table 3).

TABLE 3. ¹H NMR Data^a for the Complexes $[MI_2(CO)_3$ -(RN:CHCH:NR)]

Complex	¹ H NMR data (δ (ppm))
1	1.12(d, $J = 14.4$ Hz, 12H, CH ₃), 2.48 (brm, 2H, CH), 3.5(d, $J = 7.2$ Hz, 4H, CH ₂), 8.45(s, 2H, =CH)
2	$1.15(d, J = 5.9 Hz, 12H, CH_3), 2.45(brm, 2H, CH), 3.51(brd, J = 2.9 Hz, 4H, CH_2), 8.36(s, 2H, =CH)$
3	1.67(brm, 22H, Cy), 8.85(s, 2H, =CH)
4	1.73(brm, 22H, Cy), 8.63(s, 2H, =CH)
5	7.16(brm, 10H, Ph), 7.58(s, 2H, =CH)
6	7.38(brm, 10H, Ph), 8.06(s, 2H, =CH)
7	3.79(brs, 6H, OCH ₃), 7.49, 6.9(brm, 8H, Ph), 8.33(s, 2H, =CH)
8	3.81, 3.88(s, 6H, OCH ₃), 7.04, 6.9(brm, 4H, Ph), 7.48, 7.62(brm, 4H, Ph), 8.52(s, 2H, =CH)

^aSpectra recorded in CDCl₃ (+25 $^{\circ}$ C) and referenced to Me₄Si.

The complexes 1-8 are stable in the solid state when they are stored under nitrogen. However, they decompose in solution when exposed to air. The compounds are all soluble in CH_2Cl_2 and $CHCl_3$, but only slightly soluble in diethylether.

It is likely that the reaction of $[MI_2(CO)_3(NC-Me)_2]$ with RN:CHCH:NR proceeds via dissociation of the acetonitrile ligands from $[MI_2(CO)_3(NCMe)_2]$ since the complexes obey the effective atomic number rule and are highly crowded. Since the acetonitrile ligands in $[MI_2(CO)_3(NCMe)_2]$ are mainly σ -donor ligands they would be expected to be and were found to be labile in this system.

The infrared spectra of complexes 1-8 all show three carbonyl bands (Table 2), similar to other related seven-coordinate complexes of the type $[MX_2(CO)_3(LL)]$ (M = Mo or W; X = Cl, Br or I; LL = neutral bidentate ligand). The X-ray crystal structures of several of the complexes [MX₂(CO)₃-(LL)] have been determined [17-20] and have been found to have capped octahedral geometry. In view of the similar spectral properties of [MI₂- $(CO)_3(RN:CHCH:NR)$] (1–8) to other $[MX_2(CO)_3-$ (LL)] complexes, it is likely that 1-8 will have capped octahedral geometry. Several unsuccessful attempts were made to grow crystals of 1-8 for X-ray crystallography. The resonances shown in the ¹H NMR spectra of 1-8 are as expected for 1,4-diaza-1,3-butadiene compounds.

Several attempts were made to prepare the bis-1,4-diaza-1,3-butadiene complexes [MI(CO)₂(RN: [M(CO)₃(RN:CHCH:NR)₂]2I CHCH:NR)₂]I or by reaction of $[MI_2(CO)_3(NCMe)_2]$ with two equivalents of RN:CHCH:NR in CH₂Cl₂. These reactions were not successful since the products of these reactions were highly unstable. However, reactions of the complexes $[MI_2(CO)_3(NCMe)_2]$ with one equivalent of PPh₃ in CH_2Cl_2 to give $[MI_2(CO)_3]$ - $(NCMe)(PPh_3)$ (which have been isolated and fully characterised [21]) followed by an in situ reaction with one equivalent of RN:CHCH:NR gave cationic complexes of the type [MI(CO)₃(PPh₃)(RN:CHCH: NR)]I. Although the complexes are not very stable and it was difficult to obtain satisfactory analytical data for these compounds infrared and ¹H NMR spectroscopy confirmed the formation of these compounds. For example, the infrared spectrum of [WI(CO)₃(PPh₃)(BuⁱN:CHCH:NBuⁱ)]I showed three carbonyl bands at ν (CO) = 2098(s), 1986(s) and 1958(s) cm⁻¹ and ν (CN) = 1679(m). The room temperature ¹H NMR spectrum (CDCl₃) of [WI-(CO)₃(PPh₃)(BuⁱN:CHCH:NBuⁱ)]I showed resonances at δ = 1.13(d, J = 9.6 Hz, 12H, CH₃), 2.45 (brm, 2H, CH), 3.48(brs, 4H, CH₂), 7.46(s, 15H, Ph) and 8.7(s, 2H, =CH).

References

- 1 H. tom Dieck and I. W. Renk, Chem. Ber., 105 (1972) 1403.
- 2 H. tom Dieck and W. Kollvitz, Transition Met. Chem., 7 (1982) 154.
- 3 L. H. Staal, A. Oskam and K. Vrieze, J. Organomet. Chem., 170 (1979) 235.
- 4 L. H. Staal, G. van Koten and K. Vrieze, J. Organomet. Chem., 175 (1979) 73.
- 5 L. H. Staal, L. H. Polm, P. K. Balk, G. van Koten, K. Vrieze and A. M. F. Brouwers, *Inorg. Chem.*, 19 (1980) 3343.
- 6 H. tom Dieck, W. Kollvitz and I. Kleinwäcter, Organometallics, 5 (1986) 1449.
- 7 A. Bell and R. A. Walton, Polyhedron, 5 (1986) 951.
- 8 M. Brockmann and H. tom Dieck, J. Organomet. Chem., 314 (1986) 75.
- 9 H. tom Dieck, K. D. Franz and F. Hohmann, Chem. Ber., 108 (1975) 163.
- 10 A. Bell and R. A. Walton, J. Organomet. Chem., 290 (1985) 341.
- 11 P. K. Baker, S. G. Fraser and E. M. Keys, J. Organomet. Chem., 309 (1986) 319.
- 12 J. M. Kliegman and R. K. Barnes, Tetrahedron Lett., 24 (1969) 1953.
- 13 V. C. Barry and P. W. D. Mitchell, J. Chem. Soc., (1953) 3610.
- 14 L. A. Cort and N. R. Francis, J. Chem. Soc., (1964) 2799.
- 15 J. M. Kliegman and R. K. Barnes, *Tetrahedrov Lett.*, 22 (1970) 1859.
- 16 A. T. T. Hsieh and B. O. West, J. Organomet. Chem., 112 (1976) 285.
- 17 M. G. B. Drew, J. Chem. Soc., Dalton Trans., (1972) 1329.
- 18 A. Mercer and J. Trotter, Can. J. Chem., 52 (1974) 3331.
- 19 J. C. Dewan, K. Henrick, D. L. Keppert, K. R. Trigwell, A. H. White and S. B. Wild, J. Chem. Soc., Dalton Trans., (1975) 546.
- 20 M. G. B. Drew and C. J. Rix, J. Organomet. Chem., 102 (1975) 467.
- 21 P. K. Baker and S. G. Fraser, Transition Met. Chem., 12 (1987) 560.